\(x^4+x^3+x^2+x+1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

Ta có \(\Leftrightarrow x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow x^4+x^2+x^3+x+x^2+1=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)x\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=0\left(ktm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)

=> Pt vô nghiệm

đpcm.

11 tháng 2 2020

\(x^4+x^3+x^2+x+1=0\)

\(\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Rightarrow x^5-1=0\)

\(\Rightarrow x^5=1\)

\(\Rightarrow x=1\)

Nhưng thay vào PT ko đúng nên PT vô nghiệm

23 tháng 1 2018

bạn đánh lên google đi có đó

27 tháng 12 2018

Chieu nay nhe

27 tháng 12 2018

troi oi anh oi kho nhu vay lam sao ma lam duoc vay de hay la em len hoi thay giao em nhe thay em chinh la bo cua em day va bo em chinh la hieu pho cua truong thcs doan ket

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

26 tháng 2 2020

a) \(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

Vậy phương trình vô nghiệm (ĐPCM)

b) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+\left(x^2-x+\frac{1}{4}\right)+\left(x^2+\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)=0\)

Có : \(\left(x^2-x\right)^2\ge0\)

        \(\left(x-1\right)^2\ge0\)

        \(\left(x-\frac{1}{2}\right)^2\ge0\)

          \(x^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)\ge\frac{3}{4}\)

Vậy phương trình vô nghiệm.(ĐPCM)

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).

5 tháng 7 2019

Ta có:\(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)

\(\Leftrightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+1\right)=0\)

Vì \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(x^2+1\ge1\)

nên \(\left(x^2-x+1\right)\left(x^2+1\right)\ge\frac{3}{4}\)

Vậy Pt trên vô nghiệm

\(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow x^4+x^2-x^3-x+x^2+1=0\)

\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x^2+1=0\)( do \(x^2-x+1\)là bình phương thiếu nên không thể bằng 0)

\(\Leftrightarrow x^2=-1\)( vô lý )

Do đó : Phương trình đã cho vô nghiệm

13 tháng 1 2019

\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)

\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)

Vậy phương trình vô nghiệm

p/s: mk ko bt cách trình bài => sai sót bỏ qua