K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

Sửa đề  P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)CM P < 5/16

=> 5P = \(1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\) 

Lấy 5P trừ P theo vế ta có

5P - P = \(\left(1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\right)-\left(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\right)\)

4P = \(1+\left(\frac{2}{5}-\frac{1}{5}\right)+\left(\frac{3}{5^2}-\frac{2}{5^2}\right)+...+\left(\frac{11}{5^{10}}-\frac{10}{5^{10}}\right)-\frac{11}{5^{11}}\)

4P = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

Đặt Q = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)

=> 5Q \(=5+1+\frac{1}{5}+...+\frac{1}{5^9}\)

Lấy 5Q trừ Q theo vế ta có

5Q - Q = \(\left(5+1+\frac{1}{5}+...+\frac{1}{5^9}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\right)\)

4Q \(=5-\frac{1}{5^{10}}\)

=> Q\(=\frac{5}{4}-\frac{1}{5^{10}.4}\)

Khi đó 4P = \(\frac{5}{4}-\frac{1}{5^{10}.4}-\frac{11}{5^{11}}\)

=> P = \(\frac{5}{16}-\frac{1}{5^{10}.16}-\frac{11}{5^{11}.4}\)

\(=\frac{5}{16}-\frac{1}{5^{10}}\left(\frac{1}{16}-\frac{11}{5.4}\right)< \)\(\frac{5}{16}\)

23 tháng 7 2020

Bài làm:

Ta có: \(\frac{1}{5^2}+\frac{2}{5^2}+\frac{3}{5^2}+...+\frac{11}{5^2}\)

\(=\frac{1+2+3+...+11}{5^2}=\frac{\left(1+11\right).11:2}{5^2}=\frac{66}{25}>1>\frac{1}{16}\)

\(\Rightarrow P>\frac{1}{16}\)

=> Đề sai

Bài 2 : 

a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)

b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)

\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)

8 tháng 7 2019

a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)

\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)

\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)

Vậy x = 4 hoặc x = 5 hoặc x = 6 

\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)

\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)

\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)

[  ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)

_Minh ngụy_

18 tháng 3 2020

c) -12 . ( x - 5 ) + 7 . ( 3 -x ) = 5

<=> -12.x + 60 + 21 -7.x = 5

<=> -19 .x + 81 = 5

<=> -19.x         = 5 - 81

<=> -19.x          = -76

<=> x               = -76 : -19

<=> x                = 4

Vậy x = 4

d)               30(x+2)-6(x-5)-24x=100

<=> 30.x + 60 - 6.x + 30 -24.x  = 100

<=> 0 + 90                                  = 100

<=> 90                                         = 100

<=> x \(\in\varnothing\)

Vậy x \(\in\varnothing\)

3 tháng 4 2020

Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)

=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)

Lấy 5A trừ A theo vế ta có :

5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)

4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)

Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)

=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)

Lấy 5B trừ B ta có : 

=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)

=> 4B =\(1-\frac{1}{5^{11}}\)

=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)

Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)

=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)

cậu ơi , mình quên không ghi 1 dữ liệu ạ 

n thuộc N 

V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????

26 tháng 7 2018

a) 3x = 33.35 = 38

=> x = 8

b) 2x.2 = 222

2x+1 = 22

=> x + 1 = 22

x = 21

c) (7x-11)3 = 25.52 + 200 = 800 + 200 = 1 000 = 103

=> 7x -11 = 10

7x = 21

x = 3

d) 6x = 362 = (62)2 = 64

=> x = 4

e) 64.4x = 49

4x = 49/64

f) (21-1)3 = 203 ( xem lại đề)

h) 64.4x.2 = 45

4x.128 = 45

4= 45/128

3 tháng 9 2020

a) \(\left(x-5\right)-\frac{1}{3}=\frac{2}{5}\)

\(\Rightarrow\left(x-5\right)=\frac{2}{5}+\frac{1}{3}\)

\(\Rightarrow\left(x-5\right)=\frac{11}{15}\)

\(\Rightarrow x-5=\frac{11}{15}\)

\(\Rightarrow x=\frac{11}{15}+5\)

\(\Rightarrow x=\frac{86}{15}\)

b) \(\frac{2}{3}\cdot x-\frac{3}{2}\cdot x=\frac{5}{12}\)

\(\Rightarrow x\cdot\left(\frac{2}{3}-\frac{3}{2}\right)=\frac{5}{12}\)

\(\Rightarrow x\cdot\left(-\frac{5}{6}\right)=\frac{5}{12}\)

\(\Rightarrow x=\frac{5}{12}:\left(-\frac{5}{6}\right)\)

\(\Rightarrow x=-\frac{1}{2}\)

c) \(-\frac{2}{3}\cdot x+\frac{1}{5}=\frac{3}{10}\)

\(\Rightarrow-\frac{2}{3}\cdot x=\frac{3}{10}-\frac{1}{5}\)

\(\Rightarrow-\frac{2}{3}\cdot x=\frac{1}{10}\)

\(\Rightarrow x=\frac{1}{10}:\left(-\frac{2}{3}\right)\)

\(\Rightarrow x=-\frac{3}{20}\)

d) \(4-\left(\frac{1}{2}\cdot x+\frac{3}{4}\right)=-\frac{1}{5}\)

\(\Rightarrow\left(\frac{1}{2}\cdot x+\frac{3}{4}\right)=4-\left(-\frac{1}{5}\right)\)

\(\Rightarrow\)\(\frac{1}{2}\cdot x+\frac{3}{4}=\frac{21}{5}\)

\(\Rightarrow\)\(\frac{1}{2}\cdot x=\frac{21}{5}-\frac{3}{4}\)

\(\Rightarrow\)\(\frac{1}{2}\cdot x=\frac{69}{20}\)

\(\Rightarrow\)\(x=\frac{69}{20}:\frac{1}{2}\)

\(\Rightarrow\)\(x=\frac{69}{10}\)

20 tháng 6 2020

6/7+5/8÷5-3/16×(-2)²

=6/7+1/8-3/4

=55/56-3/4

=13/56

b.2/3 + 1/3.( -4/9 + 5/6 ) : 7/12

   =2/3 + 1/3. ( -8/18 + 15/18 ) : 7/12

    =2/3 + 1/3 . 7/18 : 7/12

      =2/3 + 7/54 : 7/12

      = 2/3 + 2/9

       =6/9 + 2/9

        = 8/9

15 tháng 4 2019

\(a,\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}\cdot(-2)^2\)

\(=\frac{6}{7}+\frac{5}{8}:\frac{5}{1}-\frac{3}{16}\cdot4\)

\(=\frac{6}{7}+\frac{5}{8}\cdot\frac{1}{5}-\frac{3}{16}\cdot4\)

\(=\frac{6}{7}+\frac{1}{8}-\frac{3\cdot4}{16}\)

\(=\frac{6}{7}+\frac{1}{8}-\frac{3\cdot1}{4}\)

\(=\frac{6}{7}+\frac{1}{8}-\frac{3}{4}=\frac{48+7-42}{56}=\frac{13}{56}\)

\(b,\frac{2}{3}+\frac{1}{3}\cdot\left[\frac{-2}{3}+\frac{5}{6}\right]:\frac{2}{3}\)

\(=\frac{2}{3}+\frac{1}{3}\cdot\left[\frac{-4+5}{6}\right]:\frac{2}{3}\)

\(=\frac{2}{3}+\frac{1}{3}\cdot\frac{1}{6}:\frac{2}{3}=\frac{2}{3}+\frac{1}{3}\cdot\frac{1}{6}\cdot\frac{3}{2}=\frac{2}{3}+\frac{1}{12}=\frac{8}{12}+\frac{1}{12}=\frac{9}{12}=\frac{3}{4}\)

c, Xem lại đề

d, \(\frac{-3}{5}+\left[\frac{-2}{5}-99\right]\)

\(=\frac{-3}{5}+\frac{-497}{5}=\frac{-500}{5}=-100\)

b, Tìm x

\(\left[\frac{2}{11}+\frac{1}{3}\right]\cdot x=\left[\frac{1}{7}-\frac{1}{8}\right]\cdot56\)

\(\Rightarrow\left[\frac{2}{11}+\frac{1}{3}\right]\cdot x=\left[\frac{8}{56}-\frac{7}{56}\right]\cdot56\)

\(\Rightarrow\left[\frac{6}{33}+\frac{11}{33}\right]\cdot x=1\)

\(\Rightarrow\frac{17}{33}\cdot x=1\)

\(\Rightarrow x=1:\frac{17}{33}=1\cdot\frac{33}{17}=\frac{33}{17}\)

17 tháng 4 2019

thank ^_^