Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đã có: \(n\in N\)*
Chứng minh theo phương pháp quy nạp toán học:
Với \(n=1\) thì \(A=1^3+2^3+3^3=36⋮9\)
Giả sử mệnh đề đúng với \(n=k\)(giả thiết quy nạp) thì ta chứng minh mệnh đề cũng đúng với \(n=k+1\)
Với \(n=k+1\Rightarrow A=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)
\(=(k^3+3k^2+3k+1+k^3+6k^2+12k+1+k^3)+9k^2+27k+27\)\(=k^3+\left(k+1\right)^3+\left(k+2\right)^3+9\left(k^2+3k+3\right)\)
Ta có: \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\) hiên nhiên \(9\left(k^2+3k+3\right)⋮9\)
Từ đó suy ra A chia hết cho 9 (n \(\in N\)*)
Bài 1:
Nếu $n$ không chia hết cho $7$ thì:
\(n\equiv 1\pmod 7\Rightarrow n^3\equiv 1^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 2\pmod 7\Rightarrow n^3\equiv 2^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 3\pmod 7\Rightarrow n^3\equiv 3^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
\(n\equiv 4\equiv -3\pmod 7\Rightarrow n^3\equiv (-3)^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 5\equiv -2\pmod 7\Rightarrow n^3\equiv (-2)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
\(n\equiv 6\equiv -1\pmod 7\Rightarrow n^3\equiv (-1)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
Vậy \(n^3-1\vdots 7\) hoặc \(n^3+1\vdots 7\)
b)
Đặt \(A=mn(m^2-n^2)(m^2+n^2)\)
Nếu $m,n$ có cùng tính chẵn lẻ thì \(m^2-n^2\) chẵn, do đó \(A\vdots 2\)
Nếu $m,n$ không cùng tính chẵn lẻ, có nghĩa trong 2 số $m,n$ tồn tại một số chẵn và một số lẻ, khi đó \(mn\vdots 2\Rightarrow A\vdots 2\)
Tóm lại, $A$ chia hết cho $2$
---------
Nếu trong 2 số $m,n$ có ít nhất một số chia hết cho $3$ thì \(mn\vdots 3\Rightarrow A\vdots 3\)
Nếu cả hai số đều không chia hết cho $3$. Ta biết một tính chất quen thuộc là một số chính phương chia $3$ dư $0$ hoặc $1$. Vì $m,n$ không chia hết cho $3$ nên:
\(m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\Rightarrow A\vdots 3\)
Vậy \(A\vdots 3\)
-----------------
Nếu tồn tại ít nhất một trong 2 số $m,n$ chia hết cho $5$ thì hiển nhiên $A\vdots 5$
Nếu cả 2 số đều không chia hết cho $5$. Ta biết rằng một số chính phương khi chia $5$ dư $0,1,4$. Vì $m,n\not\vdots 5$ nên \(m^2,n^2\equiv 1,4\pmod 5\)
+Trường hợp \(m^2,n^2\) cùng số dư khi chia cho $5$\(\Rightarrow m^2-n^2\equiv 0\pmod 5\Rightarrow m^2-n^2\vdots 5\Rightarrow A\vdots 5\)
+Trường hợp $m^2,n^2$ không cùng số dư khi chia cho $5$
\(\Rightarrow m^2+n^2\equiv 1+4\equiv 0\pmod 5\Rightarrow m^2+n^2\vdots 5\Rightarrow A\vdots 5\)
Tóm lại $A\vdots 5$
Vậy \(A\vdots (2.3.5)\Leftrightarrow A\vdots 30\) (do $2,3,5$ đôi một nguyên tố cùng nhau)
Ta có đpcm.
a)\(2^k>2k+1\left(1\right)\)
Với n=3, ta có:\(VT=8;VP=7\), nên (1) đúng nới n=3
Giả sử (1) đúng với \(k=n\), tức là \(2^n>2n+1\left(n\in N\text{*};n\ge3\right)\)
Ta sẽ chứng minh (1) đúng với \(k=n+1\) tức là phải chứng minh \(2^{n+1}>2\left(n+1\right)+1\)
Thật vậy, từ giả thiết quy nạp, ta có:
\(2^{n+1}=2\cdot2^n>2\left(2n+1\right)=4n+2=2n+3+\left(2n-1\right)>2n+3\), do \(\left(n\in N\text{*},n\ge3\right)\)
Vậy (1) đúng với mọi số nguyên \(k\ge3\)
b)\(n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[\left(n^3+n^2\right)+\left(5n^2+5n\right)+\left(6n+6\right)\right]\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)
Mà \(120⋮24\) =>Đpcm
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
n4 +6n3 + 11n2 + 6n
= n ( n3 + 2n2 + 4n2 + 8n + 3n + 6)
= n (n+2)(n2 + 4n + 3)
=n(n+2)(n+1)(n+3) là tích 4 số tự nhiên liên tiếp nên chia hết cho 8 và 3.
Mà (3;8) = 1 => n4 +6n3 + 11n2 + 6n chia hết cho 24
Ta có :
\(n^4+6n^3+11n^2+6n\)
\(=n^4+2n^3+4n^3+8n^2+3n^2+6n\)
\(=n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3+4n^2+3n\right)\)
\(=\left(n+2\right)\left(n^3+n^2+3n^2+3n\right)\)
\(=\left(n+2\right)\left[n^2\left(n+1\right)+3n\left(n+1\right)\right]\)
\(=\left(n+2\right)\left(n+1\right)\left(n^2+3n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)là tích của 4 số tự nhiên liên tiếp .
Nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
\(\Rightarrow n^4+6n^3+11n^2+6n⋮24\) ( đpcm )
Ta có: \(\left(n+3\right)^3-\left(n-3\right)^3\)
\(=n^3+9n^2+27n+27-n^3+9n^2-27n+27\)
\(=18n^2+54\)
Vì \(18n^2⋮18;54⋮54\)
\(\Rightarrow18n^2+54⋮18\)
Vậy \(\left(n+3\right)^3-\left(n-3\right)^3⋮18\)