Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\forall a,b\in R\) ta luôn có \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
Ta biến đổi tương đương biểu thức đã cho
\(\frac{\left|a+b\right|}{1+\left|a+b\right|}\le\frac{\left|a\right|+\left|b\right|}{1+\left|a\right|+\left|b\right|}\) (*)
\(\Leftrightarrow\left|a+b\right|.\left(1+\left|a\right|+\left|b\right|\right)-\left(\left|a\right|+\left|b\right|\right).\left(1+\left|a+b\right|\right)\le0\)
\(\Leftrightarrow\left|a+b\right|+\left|a+b\right|.\left(\left|a\right|+\left|b\right|\right)-\left(\left|a\right|+\left|b\right|\right)-\left|a+b\right|.\left(\left|a\right|+\left|b\right|\right)\le0\)
\(\Leftrightarrow\left|a+b\right|-\left(\left|a\right|+\left|b\right|\right)\le0\)
\(\Leftrightarrow\left|a+b\right|\le\left|a\right|+\left|b\right|\) (luôn đúng)
Do đó (*) được chứng minh
Đẳng thức xảy ra khi và chỉ khi a, b cùng dấu.
Bài đẹp quá!
Ta kí hiệu \(S_a,S_b,S_c\) lần lượt là diện tích của các tam giác \(\Delta IBC,\Delta ICA,\Delta IAB\). Từ công thức tỉ số diện tích ta suy ra \(\frac{IA}{IM}=\frac{S_b+S_c}{S_a},\) tương tự cho 2 tỉ số còn lại. Thành thử ta cần chứng minh \(\sqrt{\frac{S_b+S_c}{S_a}}+\sqrt{\frac{S_c+S_a}{S_b}}+\sqrt{\frac{S_a+S_b}{S_a}}\ge3\sqrt{2}\)
Có nhiều cách xử lý cậu này: ví dụ theo bất đẳn thức Cauchy \(\sqrt{\frac{S_b+S_c}{2S_a}}\ge\frac{2\left(S_b+S_c\right)}{2S_a+S_b+S_c}=\frac{2\left(S_b+S_c\right)^2}{2S_a\left(S_b+S_c\right)+\left(S_b+S_c\right)^2}\)
Tương tự cho 2 bất đẳng thức nữa rồi cộng lại ta sẽ được
\(\sqrt{\frac{S_b+S_c}{2S_a}}+\sqrt{\frac{S_c+S_a}{2S_b}}+\sqrt{\frac{S_a+S_b}{2S_a}}\ge\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\)
Từ bất đẳng thức quen thuộc \(S_a^2+S_b^2+S_c^2\ge S_aS_b+S_bS_c+S_cS_a\) ta suy ra
\(\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\ge3\)
Do đó ta có ĐPCM.
Bình phương 2 vế:
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\)
\(\Leftrightarrow\sqrt{ab}\ge0\) (luôn đúng)
Vậy \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
với a;b luôn lớn hơn hoặc bằng 0 ta luôn có:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\ \Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2\\ \Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)
vì a;b luôn\(\ge\)0 nên \(2\sqrt{ab}\) luôn\(\ge\) 0 nên:
\(a+2\sqrt{ab}+b\) luôn lớn hơn hoặc bằng a+b
=>\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)(ĐPCM)
ta có:a>=c+d suy ra a-c>=d (1)
b>=c+d suy ra b-d>=c (2)
nhân (1) và (2) theo vế ta được:
(a-c)*(b-d)>=c*d
suy ra ab-ad-bc+cd>=cd
suy ra ab>=cd+ad+bc-cd
suy ra ab>=ad+bc
Bài 1:Thêm đk a > b > 0
\(VT=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cô si cho 3 số dương ta có đpcm.
Đẳng thức xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)
Bài 2: BĐT \(\Leftrightarrow\left(a-b\right)+\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (Thêm 1 vào hai vế +bớt + thêm b)
\(\Leftrightarrow\left(a-b\right)+\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (tách \(b+1=\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)\))
Áp dụng BĐT Cô si cho 4 số dương ta thu được đpcm.
Đẳng thức xảy ra khi \(a-b=\frac{1}{2}\left(b+1\right)=\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)
\(\Leftrightarrow a=2;b=1\) (chị giải rõ ra nha, em làm tắt thôi)
Bài 3 để sau ạ, có lẽ cần thêm đk b > 0. Khi đó a/ b > 1 tức là a > b và > 0
Dự đoán điểm rơi tại a = 1; b = 1/2
Em nghĩ ra rồi nhưng ko chắc đâu.
Bài 3: Dễ thấy b > 0 => a > b > 0
Trước tiên cần giảm bậc cái đã:D
\(2a^3+1=a^3+a^3+1\ge3\sqrt[3]{a^6.1}=3a^2\)
Đẳng thức xảy ra khi a = 1 (1)
Do vậy: \(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3a^2}{4ab-4b^2}\). Do a > b > 0. Chia hai vế cho b2 ta được:
\(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3\left(\frac{a}{b}\right)^2}{4.\frac{a}{b}-4}=\frac{3t^2}{4t-4}\) với \(t=\frac{a}{b}>1\)
Ta cần chứng minh \(\frac{3t^2}{4t-4}\ge3\Leftrightarrow\frac{t^2}{4t-4}\ge1\Leftrightarrow t^2-4t+4\ge0\Leftrightarrow\left(t-2\right)^2\ge0\) (đúng)
Đẳng thức xảy ra khi a = 2b tức là theo (1) suy ra \(b=\frac{1}{2}\)
Ta có đpcm.
a)
<=>(x-y)+(x-y)/xy≥0
(x-y)(1-1/xy)≥0
x,y≥1=> 1/(xy)≤1=(1-1/(xy)≥0
x≥y=>x-y≥0
=> (x-y)(1-1/xy)≥0 => dccm
dang thuc khi x=y
or x.y=1
\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )
TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)
cộng vế theo vế => đpcm
Thì biết pass facebook thôi chứ cũng không biết có hack không
Bạn ấy đăng nhập bằng FACEBOOK mà
Em mới học lớp 7 nên cũng ko hiểu kĩ lắm,em nghĩ thế này:
+)Nếu a và b cùng dấu,=>|a+b|=|a|+|b|(vì cách cộng 2 số cùng dấu là cộng 2 giá trị tuyệt đối rồi đặt dấu chung.
Nhưng nếu khác dấu thì em thấy ko hợp lí lắm.
Em lấy ví dụ minh họ như sau:
a=-2;b=3.
=>|a|+|b|=2+3=5.
Mà |a+b|=|-2+3|=|1|=1.
=>Điều cần chứng minh là ko hoàn toàn đúng.
Vậy bài toán ko thể chứng minh.
E trình bày hơi lủng củng,thông cảm cho e vì e dốt văn lắm!
Hihi sorry, mk ghi nhầm đề