Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy )
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy )
\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)
a) Áp dụng đbt Cauchy cho 2 số không âm ta có :
\(x+\frac{4}{x}\ge2\sqrt{x\cdot\frac{4}{x}}=2\cdot\sqrt{4}=2\cdot2=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{x}\\x=2\end{cases}\Leftrightarrow x=2}\)
cô-si trực tiếp : a/b+b/a >= 2 căn (a/b.b/a)=2 (đpcm)
Dấu "=" xảy ra <=> a=b
b) Ta có: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(x^2-2xy+y^2\ge0\)
\(\left(x-y\right)^2\ge0\) luôn đúng \(\forall x;y\)
Vậy \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\left(đpcm\right)\)
Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\) (Như đề là lớn hơn hoặc bằng 2)
\(\Leftrightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}\)
\(=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) (Vì x;y;z là ba số dương nên Áp dụng BĐT Côsi)
\(\Leftrightarrow\frac{1}{x+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)
Chứng minh tương tự ta được: \(\frac{1}{y+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)
\(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)
Nhân (1);(2);(3) ta có: \(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}.\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}.\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)
Với x;y;z > 0 ta có: \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{x+1}=\frac{y}{y+1}\\\frac{y}{y+1}=\frac{z}{z+1}\\\frac{z}{z+1}=\frac{x}{x+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}\)
Vậy GTLN của xyz = 1/8 khi và chỉ khi x=y=z
P/S: Bài giải của em còn nhiều sai sót, mong mọi người thông cảm, góp ý
Dùng Bđt Cauchy: \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Chơi tổng quát luôn tìm GTNN &LN \(P=\frac{x}{y}+\frac{y}{x}\) với mọi x,y khác không
đặt x/y=t => y/x=1/t
\(P=t+\frac{1}{t}=\frac{t^2+1}{t}\Leftrightarrow t^2-pt+1=0\) (1)
\(\left(1\right)\Leftrightarrow t^2+pt+\frac{p^2}{4}=\frac{p^2}{4}-1\)
\(\Leftrightarrow\left(t-\frac{p}{2}\right)^2=\frac{p^2-4}{4}\)
VT là bình phương => để tồn tại (t) VP >=0
\(\Leftrightarrow\frac{p^2-4}{4}\ge0\Leftrightarrow p^2-4\ge0\Leftrightarrow p^2\ge4\Rightarrow!p!\ge2\Rightarrow\left[\begin{matrix}P\le-2\\P\ge2\end{matrix}\right.\)