\(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

ta có:

\(\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{\left(b-a\right).\left(b+a\right)+\left(a-c\right).\left(a+c\right)}{\left(a+b\right).\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\left(1\right)\)

\(\frac{c^2-a^2}{\left(b+c\right).\left(b+a\right)}=\frac{c^2-b^2+b^2-a^2}{\left(b+c\right).\left(b+a\right)}=\frac{\left(c-b\right).\left(b+c\right)+\left(b-a\right).\left(a+b\right)}{\left(b+c\right).\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\left(2\right)\)

\(\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{a^2-c^2+c^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{\left(a-c\right).\left(a+c\right)+\left(c-b\right).\left(c+b\right)}{\left(c+a\right).\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\left(3\right)\)

từ (1),(2),(3)

\(\Rightarrow\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right).\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}\)

\(=\frac{b-a}{a+c}+\frac{a-c}{a+b}+\frac{c-b}{a+b}+\frac{b-a}{b+c}+\frac{a-c}{c+b}+\frac{c-b}{c+a}=\frac{c-a}{a+c}+\frac{b-c}{b+c}+\frac{a-b}{a+b}\Rightarrowđpcm\)

13 tháng 11 2018

Với điều kiện như đề bài

Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)

Tướng tự: 

\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)

\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)

Em nhớ làm tiếp nhé!

13 tháng 11 2018

làm tiếp kiểu gì ạ 

19 tháng 2 2017

1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)

CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)

Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Thay vào biểu thwusc M ta được M=3abc (ĐPCM)

2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó

Nếu không thấy thì em có thể quy đồng lên mà rút gọn

20 tháng 2 2017

vâng e cảm ơn anh 

NV
15 tháng 6 2019

\(VT=\frac{c-b}{\left(a-b\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)}+\frac{b-a}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{-\left(b-c\right)^2-\left(c-a\right)^2-\left(a-b\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-2a^2-2b^2-2c^2+2ab+2ac+2bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2ab-2ac+2bc-2b^2+2ab+2ac-2bc-2a^2-2ab+2ac+2bc-2c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2\left(a-b\right)\left(b-c\right)+2\left(a-b\right)\left(c-a\right)+2\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2}{c-a}+\frac{2}{b-c}+\frac{2}{a-b}\)