Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}-\frac{5}{6}+\frac{6}{7}+\frac{5}{6}-\frac{4}{5}+\frac{3}{4}-\frac{2}{3}+\frac{1}{2}\)
\(=\left(\frac{1}{2}+\frac{1}{2}+\frac{6}{7}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{-3}{4}+\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)+\left(\frac{-5}{6}+\frac{5}{6}\right)\)
\(=\frac{13}{7}+0+0+0+0\)
\(=\frac{13}{7}\)
\(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}-\frac{5}{6}+\frac{6}{7}+\frac{5}{6}-\frac{4}{5}+\frac{3}{4}-\frac{2}{3}+\frac{1}{2}.\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)-\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)-\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{6}{7}\)
\(=1+0-0+0+\frac{6}{7}\)
\(=1+\frac{6}{7}=1\frac{6}{7}\)
2: =>2x-1/4=5/6-1/2x
=>5/2x=5/6+1/4=13/12
=>x=13/30
3: =>3x-5/6=2/3-1/2x
=>3,5x=2/3+5/6=4/6+5/6=9/6=3,2
hay x=32/35
a, \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2C=1-\frac{1}{3^{99}}\)
\(C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)(đpcm)
b, Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{397}{3^{100}}\)
\(A=\frac{3}{4}-\frac{397}{4.3^{100}}< \frac{3}{4}\)(đpcm)
bai nay thi mk chiu that