Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(2016=xyz\)vào biểu thức ta được
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+z+1}{xz+z+1}=1\)
Vậy \(A=1\)
Vì \(xyz=2016\)
\(\Rightarrow A=\frac{2016x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)
\(=\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+1+z}{xz+z+1}=1\)
\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}\)
Ta có: \(\frac{xy+2x+1}{xy+x+y+1}=\frac{\left(xy+x\right)+\left(x+1\right)}{\left(xy+x\right)+\left(y+1\right)}=\frac{x\left(y+1\right)+\left(x+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{x}{x+1}+\frac{1}{y+1}\)
Tương tự ta có:
\(\frac{yz+2y+1}{yz+y+z+1}=\frac{y}{y+1}+\frac{1}{z+1}\)
\(\frac{zx+2z+1}{zx+z+x+1}=\frac{z}{z+1}+\frac{1}{x+1}\)
Từ đây ta có biểu thức ban đầu sẽ bằng
\(\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}\)
\(\left(\frac{x}{x+1}+\frac{1}{x+1}\right)+\left(\frac{y}{y+1}+\frac{1}{y+1}\right)+\left(\frac{z}{z+1}+\frac{1}{z+1}\right)=1+1+1=3\)
CHÚ Ý: ab+a+b+1=a(b+1)+(b+1)=(a+1)(b+1)
Xét: \(\frac{xy+2x+1}{xy+x+y+1}=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}=\frac{x}{x+1}+\frac{1}{y+1}\)
Tương tự với 2 biểu thức còn lại ta được:
A=\(\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}\)
=\(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)
Ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\frac{1}{z}^3\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+3\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{z^3}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{3}{xyz}.\)Vì \(\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)
Mặt khác : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)
\(\Rightarrow xy+yz+zx=0\)`
\(A=\frac{yz}{x^2}+2yz+\frac{xz}{y^2}+2xz+\frac{xy}{z^2}+2xy\)
\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}+2\left(xy+yz+xz\right)\)Vì x , y , z khác 0 .
\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)Vì \(xy+yz+xz=0\)
\(=xyz\cdot\frac{3}{xyz}\)Vì \(\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=\frac{3}{xyz}\)
\(=3\)
Vậy \(A=3\)
mk tưởng chố \(\left(\frac{1}{x}+\frac{1}{y}\right)^3\)phải bằng\(\left(\frac{-1}{z}\right)^3\)chứ
\(E=\frac{x}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{xyz.z}{zx+xyz.z+xyz}=\frac{1}{yz+y+1}+\frac{y}{yz+y+1}+\frac{yz}{1+yz+y}=\frac{1+y+yz}{1+y+yz}=1\)
Xin lỗi mk chưa học tới bài này.Bạn vào câu hỏi tương tự thử có k.