Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT = (3a + 2b - 1)(a + 5) - 2b(a - 2)
= 3a2 + 2ab - a + 15a + 10b - 5 - 2ab + 4b
= 3a2 + 14a + 14b - 5
= 3a2 + 9a + 5a + 15 + 14b - 20
= 3a(a + 3) + 5(a + 3) + 2(7b - 10)
= (3a + 5)(a + 3) + 2(7b - 10)
= VP (đpcm)
Câu 1:
a) Ta có: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)
c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)
\(=ab+a+ab+b\)
\(=a+b+2ab\)(1)
Thay ab=1 vào biểu thức (1), ta được:
a+b+2(*)
Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)
Thay ab=1 vào biểu thức (2), ta được:
1+a+b+1=a+b+2(**)
Từ (*) và (**) ta được VT=VP(đpcm)
Câu 2:
Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)
\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)
\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)
\(\Leftrightarrow-11x-22=0\)
\(\Leftrightarrow-11x=22\)
hay x=-2
Vậy: x=-2
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)
\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)
\(-5x-8=0\)
\(x=-\frac{8}{5}\)
Mai mik làm mấy bài kia sau
a) \(\left(x-3\right)^2+2\left(x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left(x-3+x+2\right)^2\)
\(=\left(2x-1\right)^2\)
Hằng đẳng thức: \(\left(a+b\right)^2=a^2+2ab+b^2\).
b) \(\left(x+5\right)^2-\left(2x+10\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left(x+5\right)^2-2\left(x+5\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left[\left(x+5\right)-\left(x-6\right)\right]^2\)
\(=11^2=121\)
Hằng đẳng thức: \(\left(a-b\right)^2=a^2-2ab+b^2\).
a.\(\left(x-3\right)^2+2\left(x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left[\left(x-3\right)+\left(x+2\right)\right]^2\)
\(=\left(x-3+x+2\right)^2\)
\(=\left(2x-1\right)^2\)
b.\(\left(x+5\right)^2-\left(2x+10\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left(x+5\right)^2-2\left(x+5\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left[\left(x+5\right)-\left(x-6\right)\right]^2\)
\(=\left(x+5-x+6\right)^2\)
a, \(-\left(x+3\right)\left(x-4\right)+\left(x+1\right)\left(x-1\right)=10\)
\(\Rightarrow-\left(x^2-4x+3x-12\right)+x^2-1=10\)
\(\Rightarrow-x^2+x+12+x^2-1=10\)
\(\Rightarrow x=10+1-12\Rightarrow x=-1\)
b, \(\left(2x-1\right)\left(x-2\right)-\left(x+3\right)\left(2x-7\right)=3\)
\(\Rightarrow2x^2-4x-x+2-\left(2x^2-7x+6x-21\right)=3\)
\(\Rightarrow2x^2-5x+2-2x^2+x+21=3\)
\(\Rightarrow-4x=3-21-2\Rightarrow-4x=-20\)
\(\Rightarrow x=5\)
Các câu còn lại làm tương tự! Phá ngoặc ra!
Chúc bạn học tốt!!!
\(\left(x+a\right)\left(x+b\right)=x\left(x+b\right)+a\left(x+b\right)\)
\(=x^2+xb+ax+ab\)
\(=x^2+\left(a+b\right)x+ab\)
Áp dụng :
a/ \(\left(x+5\right)\left(x+2\right)=x^2+\left(5+2\right).x+5.2=x^2+7x+10\)
b/ \(\left(x+8\right)\left(x-3\right)=x^2+\left(8-3\right)x+8.\left(-3\right)=x^2+5x-24\)
c/ \(\left(x-7\right)\left(x-4\right)=x^2+\left[\left(-7\right)+\left(-3\right)\right]x+\left(-7\right)\left(-3\right)=x^2-10x+21\)
d/ \(\left(x-9\right)\left(x+1\right)=x^2+\left(-9+1\right)x+\left(-9\right).1=x^2-8x-9\)
phân tách (x + a)( x+ b) và x^2 +( a + b )x + ab để biết được cách nó ghép
a) \(\left(5x-2\right)^2-\left(7-6x\right)^2=0\)
\(\Leftrightarrow\left(5x-2-7+6x\right)\left(5x-2+7-6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}11x-9=0\\-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{11}\\x=5\end{cases}}}\)
b) \(\left(3x-1\right)^2+\left(5x+2\right)^2=x+5\)
\(\Leftrightarrow9x^2+6x+1+25x^2+20x+4=x+5\)
\(\Leftrightarrow34x^2+26x+5=x+5\)
\(\Leftrightarrow34x^2+25x=0\)
\(\Leftrightarrow x\left(34x+25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\34x+25=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-25}{34}\end{cases}}}\)
c) Tự làm nốt
a) ( 5x - 2 )2 - ( 7 - 6x )2 = 0
<=> [ 5x - 2 - ( 7 - 6x ) ][ 5x - 2 + ( 7 - 6x ) ] = 0
<=> [ 5x - 2 - 7 + 6x ][ 5x - 2 + 7 - 6x ] = 0
<=> [ 11x - 9 ][ 5 - x ] = 0
<=> \(\orbr{\begin{cases}11x-9=0\\5-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{11}\\x=5\end{cases}}\)
b) ( 3x - 1 )2 + ( 5x + 2 )2 = x + 5
<=> 9x2 - 6x + 1 + 25x2 + 20x + 4 = x + 5
<=> 34x2 + 14x + 5 = x + 5
<=> 34x2 + 14x + 5 - x - 5 = 0
<=> 34x2 + 13x = 0
<=> 13x( 34/13x + 1 ) = 0
<=> \(\orbr{\begin{cases}13x=0\\\frac{34}{13}x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{13}{34}\end{cases}}\)
c) ( x - 2 )2 - ( 3 + 2x )2 = 20x - 4
<=> x2 - 4x + 4 - ( 4x2 + 12x + 9 ) = 20x - 4
<=> x2 - 4x + 4 - 4x2 - 12x - 9 - 20x + 4 = 0
<=> -3x2 - 36x - 1 = 0
=> Vô nghiệm ( bấm EQN ra nghiệm vô tỉ )