\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)

\(=\frac{x^2+ax^2+a+a^2+a^2x^2+1}{x^2-ax^2-a+a^2+a^2x^2+1}\)

\(=\frac{x^2+1+a\left(x^2+1\right)+a^2\left(x^2+1\right)}{x^2+1-a\left(x^2+1\right)+a^2\left(x^2+1\right)}\)

\(=\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)

14 tháng 4 2018

\(\dfrac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)

\(=\dfrac{x^2+ax^2+a+a^2+a^2x^2+1}{x^2-ax^2-a+a^2+a^2x^2+1}\)

\(=\dfrac{\left(x^2+ax^2+a^2x^2\right)+\left(a+a^2+1\right)}{\left(x^2-ax^2+a^2x^2\right)+\left(a^2-a+1\right)}\)

\(=\dfrac{x^2\left(1+a+a^2\right)+\left(a+a^2+1\right)}{x^2\left(1-a+a^2\right)+\left(a^2-a+1\right)}\)

\(=\dfrac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{a^2+a+1}{a^2-a+1}\)

=> Biểu thức không phụ thuộc vào giá trị biến x

a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)

\(=2x^2-6x-41-2x^2-12x\)

=-18x-41

b: \(=2x^2-6x-2x^2+6x+14=14\)

c: \(=x^3+1-x^3+1=2\)

25 tháng 7 2017

\(M=\dfrac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)

\(=\dfrac{x^2+a+a^2x+a^2+a^2x^2+1}{x^2-a-ax^2+a^2+a^2x^2+1}\)

\(=\dfrac{a\left(x^2+1\right)+a^2\left(x^2+1\right)+x^2+1}{-a\left(x^2+1\right)+a^2\left(x^2+1\right)+x^2+1}\)

\(=\dfrac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{a^2+a+1}{a^2-a+1}\)

Vậy phân thức M ko phụ thuộc vào giá trị của x

3 tháng 12 2017

M =\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\) = \(\frac{x^2+a+ax^2+a^2+a^2x^2+1}{x^2+a^2-a-ax^2+a^2x^2+1}\)=\(\frac{x^2\left(a^2+a+1\right)+\left(a^2+a+1\right)}{x^2\left(a^2-a+1\right)+\left(a^2-a+1\right)}\)

=\(\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a-1\right)}\). Mà x2>= 0 => x2+1 >0

M= \(\frac{a^2+a+1}{a^2-a+1}\)

Vậy M không phụ thuốc vào giá trị của x

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

25 tháng 9 2020

A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)

   = x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x

  = x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x

  = (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)

= -6x + 16

=> có phụ thuộc vào biến x

B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)

   = 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)

    = 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7

=> không phụ thuộc vào biến x

25 tháng 9 2020

\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)

\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)

\(=-6x+16\)

Vậy biểu thức A phụ thuộc vào biến x

\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8x^3-8-8x^3+1\)

\(-7\)

Vậy biểu thức B không phụ thuộc vào biến x