\(\left(a^2-b^2\right)\left(c^2-d^2\right)\le\left(ac-bd\right)^2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

c) theo bđt cauchy ta có

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)

cộng hết lại rút 2 đi \(\Rightarrowđpcm\)

18 tháng 12 2017

b)theo bđt bunhiacopxki ta có

\(\left(1^2+a^2\right)\left(1^2+b^2\right)\ge\left(1+ab\right)^2\)

\(\Rightarrowđpcm\)

30 tháng 12 2022

3: =>a^2c^2+a^2d^2+b^2c^2+b^2d^2>=a^2c^2+2abcd+b^2d^2

=>a^2d^2-2abcd+b^2c^2>=0

=>(ad-bc)^2>=0(luôn đúng)

13 tháng 12 2017

a ) \(2a^2+b^2+c^2\ge2a\left(b+c\right)\)

\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\)

\(\LeftrightarrowĐPCM.\)

b ) \(a^2+2b^2+12\ge2b\left(3-a\right)\)

\(\Leftrightarrow a^2+2b^2+12\ge6b-2ab\)

\(\Leftrightarrow a^2+2ab+b^2+b^2-6b+9+3\ge0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b-3\right)^2+3\ge0\)

\(\LeftrightarrowĐPCM.\)

c ) \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)

\(\Leftrightarrow a^2+2a+1+b^2+2b+1+c^2+2c+1\ge0\)

\(\Leftrightarrow\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\ge0\)

\(\LeftrightarrowĐPCM.\)

18 tháng 12 2017

a)theo cauchy ta có

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+c^2\ge2ac\end{matrix}\right.\)

\(\Leftrightarrow2a^2+b^2+c^2\ge2a\left(b+c\right)\Rightarrowđpcm\)

câu b) xem lại đề , tôi nghĩ phải > 0 mới đúng

c) theo cauchy ta có

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+c^2\ge2ac\\b^2+c^2\ge2bc\end{matrix}\right.\)

cộng lại, rút 2 đi suy ra đpcm

9 tháng 11 2016

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

9 tháng 11 2016

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

13 tháng 12 2017

a ) \(x^2+4y^2+3z^2+14\ge2x+12y+6z\)

\(\Leftrightarrow x^2-2x+1+4y^2-12y+9+3z^2-6z+3+1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2+1\ge0\)

\(\LeftrightarrowĐPCM.\)

b ) \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\LeftrightarrowĐPCM.\)

13 tháng 12 2017

a) \(x^2+4y^2+3z^2+14\ge2x+12y+6z\)

\(\Rightarrow x^2+4y^2+3z^2+14-2x-12y-6z\ge0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+3\left(z^2-2z+1\right)+1\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2\ge-1\)

Xem lại đề

b)

\(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow3a^2+3b^2+3c^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\) *Đúng*

Dấu "=" xảy ra khi: \(a=b=c\)

NV
9 tháng 2 2020

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

a/ Từ BĐT ban đầu ta có:

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)

NV
9 tháng 2 2020

b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:

\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)

c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:

\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

Mặt khác ta cũng có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

23 tháng 10 2018

am-gm là ra thoi bạn :v

NV
30 tháng 6 2020

d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)

\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)

NV
30 tháng 6 2020

a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)