Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với b\(\ge\)0, a\(\ge\)\(\sqrt{b}\) ta bình phương 2 vế lên có:
\(\sqrt{a\pm \sqrt{b}}^2\)=\((\sqrt{\dfrac{\sqrt{a+\sqrt{a^2-b}}}{2}}\)\pm \(\sqrt{\dfrac{\sqrt{a-\sqrt{a^2-b}}}{2}})^2\)
Xét vế trái ta có:
\(\sqrt{(a\pm \sqrt{b})^2}\)=\(a\pm \sqrt{b})
a) Ta có: \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\Leftrightarrow\left(\sqrt{a+b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b\le a+2\sqrt{ab}+b\)
Điều này luôn đúng với mọi a,b€N, do đó BĐT này đúng, dấu ‘=‘ xảy ra khi a=b=0.
b) Ai giải giúp với :)
Ta có : \(\sqrt{\text{a}-\sqrt{\text{b}}}\text{=}\sqrt{\frac{a+\sqrt{a^2-b}}{2}}-\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\) \(\left(b\ge0,a\ge\sqrt{b}\right)\)
Đặt \(x=\sqrt{a-\sqrt{b}}+\sqrt{a+\sqrt{b}}\) => \(x>0\Rightarrow x=\sqrt{x^2}\)
Ta có : \(x^2=2a+2\sqrt{a^2-b}=4\left(\frac{a+\sqrt{a^2-b}}{2}\right)\)\(\Rightarrow x=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)
hay \(\sqrt{a-\sqrt{b}}+\sqrt{a+\sqrt{b}}=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)(1)
Đặt \(y=\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}\Rightarrow y>0\Rightarrow y=\sqrt{y^2}\)
Ta có ; \(y^2=2a-2\sqrt{a^2-b}=4\left(\frac{a-\sqrt{a^2-b}}{2}\right)\Rightarrow y=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
hay \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(2)
Trử (1) và (2) theo vế ta được :
\(\sqrt{a-\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}-\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(đpcm)
c) theo bunhia ta có:
\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)
\(\Rightarrow VT\le\sqrt{6}\)
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}\right)^2}{\sqrt{a}}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\left(dpcm\right)\)
Theo bđt Cauchy :
\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{\frac{a}{\sqrt{b}}\cdot\sqrt{b}}=2\sqrt{a}\)
Dấu "=" \(\Leftrightarrow\frac{a}{\sqrt{b}}=\sqrt{b}\Leftrightarrow a=b\)
+ Tươ tự ta cm đc : \(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\)
Dấu "=" <=> a = b
Do đó : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
=> đpcm
Dấu "=" <=> a = b
PP: Dùng tương đương thần chưởng !!!
Ý tưởng : Chứng minh 1/\sqrt{1+a^2} + 1/\sqrt{1+b^2} >= 2/\sqrt{1+ab} >= 2/\sqrt{ 1+ (a+b)^2/4 }
._. Bạn biết đăng hình ảnh lên đây không mình làm ra rùi chụp cho (:
\(\sqrt{a}-\sqrt{b}\le\sqrt{a-b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\le a-b\)
\(\Leftrightarrow a-2\sqrt{ab}+b-a+b\le0\)
\(\Leftrightarrow2b-2\sqrt{ab}\le0\)
\(\Leftrightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)\le0\)
Do \(a\ge b\Leftrightarrow\sqrt{a}\ge\sqrt{b}\Leftrightarrow\sqrt{b}-\sqrt{a}\le0\forall a;b\)
Do đó bđt cuối luôn đúng
Ta có đpcm