\( ( a^2 + b^2 ) (a^2 + 1) \geq 4 a^2 b \)

luôn đúng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cái này đặt a= 2^-x,b=2^-y,c=2^-z
==>a+b+c=1
áp dụng cosi bình thường,vì a,b,c vai trò ngag nhau,đấu = khí a=b=c=1/3,dựa vào điểm rơi để áp dụng cosi thôi

8 tháng 5 2017

đề bài đúng ko vậy bạn?

8 tháng 5 2017

Đề bài chắc chắn đúng bạn ạ

10 tháng 9 2018

a ) Giả sử : \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)

\(\Leftrightarrow4a^2+4b^2\ge2a^2+4ab+2b^2\)

\(\Leftrightarrow2a^2+2b^2\ge4ab\)

\(\Leftrightarrow2a^2+2b^2-4ab\ge0\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) ( Điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\left(đpcm\right)\)

b ) Giả sử : \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a+b+c\right)^2\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2+2ab+2ac+2bc\right)\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)+6\left(ab+ac+bc\right)\)

\(\Leftrightarrow6\left(a^2+b^2+c^2\right)\ge6\left(ab+ac+bc\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

( Điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\left(đpcm\right)\)

:D

10 tháng 9 2018

Thanks bạn và thanks luôn con ra đề học cùng lớp!

26 tháng 5 2017

Áp dụng BĐT Cauchy schwarz dạng phân thức ta có :

\(\dfrac{a^2}{1+b-a}+\dfrac{b^2}{1+c-b}+\dfrac{c^2}{1+a-c}\ge\dfrac{\left(a+b+c\right)^2}{3}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)

( vì \(a^2+b^2+c^2\ge ab+bc+ca\) )

Xảy ra đẳng thức khi và chỉ khi a=b=c= \(\sqrt{\dfrac{1}{3}}\)