Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge4\left(a^2+b^2\right)^2+\dfrac{1}{ab}\)
\(\ge4\left(\dfrac{\left(a+b\right)^2}{2}\right)^2+\dfrac{4}{\left(a+b\right)^2}=1+4=5\)
a2 + b2 + 4 ≥ ab + 2( a + b )
Nhân 2 vào từng vế của bất đẳng thức
<=> 2( a2 + b2 + 4 ) ≥ 2[ ab + 2( a + b ) ]
<=> 2a2 + 2b2 + 8 ≥ 2ab + 4( a + b )
<=> 2a2 + 2b2 + 8 ≥ 2ab + 4a + 4b
<=> 2a2 + 2b2 + 8 - 2ab - 4a - 4b ≥ 0
<=> ( a2 - 2ab + b2 ) + ( a2 - 4a + 4 ) + ( b2 - 4b + 4 ) ≥ 0
<=> ( a - b )2 + ( a - 2 )2 + ( b - 2 )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\a-2=0\\b-2=0\end{cases}}\Leftrightarrow a=b=2\)
Bài làm
a) Đặt a3 + b3 - ab2 - a2b = 0
<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0
<=> ( a + b )( a2 + ab + b2 - ab ) = 0
<=> ( a + b )( a2 + b2 ) = 0 (1)
Mà a2 + b2 > 0
=> ( a + b )( a2 + b2 ) > 0 (2)
Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0
Vậy a3 + b3 - ab2 - a2b > 0 ( đpcm )
b) Đặt a5 + b5 - a4b - ab4 = 0
<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0
<=> a4( a - b ) + b4( b - a ) = 0
<=> a4( a - b ) - b4( a - b ) = 0
<=> ( a - b )( a4 - b4 ) = 0 (1)
Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0
=> ( a - b )( a4 - b4 ) < 0 (2)
Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0
Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm )
Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu
a, a2+b2+c2 >= ab+bc+ca
<=>a2+b2+c2-ab-bc-ca >= 0
<=>2(a2+b2+c2-ab-bc-ca) >= 0
<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0
<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
b, a2+b2+1 >= ab+a+b
<=>a2+b2+1-ab-a-b >= 0
<=>2(a2+b2+1-ab-a-b) >= 0
<=>2a2+2b2+2-2ab-2a-2b >= 0
<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0
<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)
Vậy...
c, a2+b2+c2+3 >= 2(a+b+c)
<=>a2+b2+c2+3-2a-2b-2c >= 0
<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0
<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)
Vậy...
d, a2+b2+c2 >= 2(ab+bc-ca)
<=>a2+b2+c2-2ab-2bc+2ca >= 0
<=>(a-b-c)2 >= 0 (luôn đúng)
Dấu "=" xảy ra khi a=b=c
Vậy...
e,ta có: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)
Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)
Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)
Dấu "=" xảy ra khi a = b
a^2+b^2+2>2(a+b)
<=> a^2+b^2+2> 2a + 2b>0
<=> (a^2 + 2a+1)+2> (b^2+2b+1)
ta có (a-b)2 >= 0
Va,b(=) a2 -2ab+b2 >=0
(=) a2 + b2 >= 2ab
(=) (a2 + b2)/2 >= ab(ĐPCM)
#Học-tốt
\(\frac{a^2+b^2}{2}\ge ab\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) * đúng *