K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có (a-b)2 >= 0  a,b

(=) a2 -2ab+b2 >=0

(=) a2 + b2 >= 2ab

(=) (a2 + b2)/2 >= ab(ĐPCM)

#Học-tốt

11 tháng 2 2020

\(\frac{a^2+b^2}{2}\ge ab\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) * đúng *

5 tháng 1 2018

\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge4\left(a^2+b^2\right)^2+\dfrac{1}{ab}\)

\(\ge4\left(\dfrac{\left(a+b\right)^2}{2}\right)^2+\dfrac{4}{\left(a+b\right)^2}=1+4=5\)

11 tháng 9 2020

a2 + b2 + 4 ≥ ab + 2( a + b )

Nhân 2 vào từng vế của bất đẳng thức

<=> 2( a2 + b2 + 4 ) ≥ 2[ ab + 2( a + b ) ] 

<=> 2a2 + 2b2 + 8 ≥ 2ab + 4( a + b ) 

<=> 2a2 + 2b2 + 8 ≥ 2ab + 4a + 4b

<=> 2a2 + 2b2 + 8 - 2ab - 4a - 4b ≥ 0

<=> ( a2 - 2ab + b2 ) + ( a2 - 4a + 4 ) + ( b2 - 4b + 4 ) ≥ 0

<=> ( a - b )2 + ( a - 2 )2 + ( b - 2 )2 ≥ 0 ( đúng )

=> đpcm 

Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\a-2=0\\b-2=0\end{cases}}\Leftrightarrow a=b=2\)

11 tháng 9 2020

\(a^2+b^2+4\ge ab+2\left(a+b\right)\)

Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\left(\forall x,y,z\in R\right)\)

=> đpcm

18 tháng 4 2020

Bài làm

a) Đặt a3 + b3 - ab2 - a2b = 0

<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0

<=> ( a + b )( a2 + ab + b2 - ab ) = 0

<=> ( a + b )( a2 + b2 ) = 0          (1) 

Mà a2 + b2 > 0 

=> ( a + b )( a2 + b2 ) > 0            (2) 

Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0 

Vậy a3 + b3 - ab2 - a2> 0 ( đpcm )

b) Đặt a5 + b5 - a4b - ab4 = 0

<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0

<=> a4( a - b ) + b4( b - a ) = 0

<=> a4( a - b ) - b4( a - b ) = 0 

<=> ( a - b )( a4 - b4 ) = 0              (1) 

Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0

=> ( a - b )( a4 - b4 ) < 0                (2) 

Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0

Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm ) 

5 tháng 7 2018


Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu


 

5 tháng 7 2018

a, a2+b2+c2 >= ab+bc+ca

<=>a2+b2+c2-ab-bc-ca >= 0

<=>2(a2+b2+c2-ab-bc-ca) >= 0

<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0

<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

b, a2+b2+1 >= ab+a+b

<=>a2+b2+1-ab-a-b >= 0

<=>2(a2+b2+1-ab-a-b) >= 0

<=>2a2+2b2+2-2ab-2a-2b >= 0

<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0

<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)

Vậy...

c, a2+b2+c2+3 >= 2(a+b+c)

<=>a2+b2+c2+3-2a-2b-2c >= 0

<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0

<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)

Vậy...

d, a2+b2+c2 >= 2(ab+bc-ca)

<=>a2+b2+c2-2ab-2bc+2ca >= 0

<=>(a-b-c)2 >= 0 (luôn đúng)

Dấu "=" xảy ra khi a=b=c

Vậy...

e,ta có:  \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)

Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)

Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)

Dấu "=" xảy ra khi a = b

12 tháng 4 2016

a^2+b^2+2>2(a+b)

<=> a^2+b^2+2> 2a + 2b>0

<=> (a^2 + 2a+1)+2> (b^2+2b+1)