K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Vì a, b, c > =0 theo BĐT Cô-si

\(a+b+c\ge3\sqrt[3]{abc}\)

\(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)

Nhân theo vế 2 BĐT trên ta được  \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9\sqrt[3]{a^3b^3c^3}=9abc\)

Đẳng thức xảy ra  \(\Leftrightarrow a=b=c\)

13 tháng 3 2020

Sai đề, check (a;b;c;d) =(1;0;3;0)

P/s: Sao chép lại đề: (Để chắc ăn mình không nhìn nhầm):

"Chứng minh a2-b2+c2-d2>=(a-b+c-d)2

với a, b, c, d>=0"

5 tháng 2 2017

áp dụng hàng đẳng thức là ra bạn ak! ^^

25 tháng 10 2019

Thay 1=\(\frac{a^2+b^2+c^2}{3}\)vào va rút gọn ta được

VT= \(\frac{4}{3}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3}\left(\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{a}\right)+\frac{1}{3}\left(a+b+c\right)\)(1)

Áp dụng \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(bunhiacopxky\right)\) ta được

(1) \(\ge\frac{4}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\left(a+b+c\right)=2\left(a+b+c\right).\)

Dấu'=' khi a=b=c