Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0< a,b,c< 1\)\(\Rightarrow\)\(\hept{\begin{cases}ab< a;a^2< a\\bc< b;b^2< b\\ca< c;c^2< c\end{cases}}\)
\(a\ge b\ge c\)
\(\frac{1}{3}\le a< 1\Rightarrow\left(a-\frac{1}{3}\right)\left(a-1\right)\le0\)
\(\Rightarrow\)\(\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
aaaaaaaa bỏ mấy đoạn trên đi nha >_< vẽ bùa đó, lấy mỗi đoạn dưới thôi
Rất dễ dàng, chúng ta có:
\(VT-VP=\frac{2ab\left[\left(a+bc-b-c\right)^2+\left(c-1\right)^2\right]+c\left(b-1\right)^2\left[\left(a+b-c\right)^2+1\right]}{2ab+c\left(b-1\right)^2}\ge0\)
Đẳng thức xảy ra khi \(a=b=c=1\). Ta có đpcm.
Anh tth bày em didéplê mak e ko có bt đi nên dùng dirichlet tạm vậy.......
Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)
\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc-ac-bc+c\ge0\)
\(a^2+b^2+c^2+2abc+1=\left(a-b\right)^2+\left(1-c\right)^2+2\left(ab+bc+ca\right)+2\left(abc-ac-bc+c\right)\)
Rất dễ thấy \(\left(a-b\right)^2\ge0;\left(1-c\right)^2\ge0;2\left(abc-ac-bc+c\right)\ge0\)
\(\Rightarrowđpcm\)
e cu len day hoi chi zay