
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.
câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120
bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào

\(\left(7x-4\right)\left(2x+3\right)-13x\)
\(=14x^2+21x-8x-12-13x\)
\(=14x^2-12\)
\(a^3-\left(a^2-3a\right)\left(a+3\right)\)
\(=a^3-\left(a^3+3a^2-3a^2-9a\right)\)
\(=a^3-a^3-3a^2+3a^2+9a\)
\(=9a\)
\(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)
\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)
\(=\)\(2a^2-b^2\)
\(5b\left(2x-b\right)+\left(x-6a\right)\left(5a+2x\right)\)
\(=10bx-5b^2+5ax+2x^2-30a^2-12ax\)
\(=2x^2-30a^2-5b^2+10bx-7ax\)

Lời giải:
a) ĐKXĐ: $a\neq 0; a\neq 3; a\neq 2$
\(P=\left[\frac{a}{3a(a-2)}-\frac{2a-3}{a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\left[\frac{a^2}{3a^2(a-2)}-\frac{6a-9}{3a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\frac{a^2-6a+9}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{(a-3)^2}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{2}{a(a-2)}\)
b)
Để $P>0\Leftrightarrow \frac{2}{a(a-2)}>0\Leftrightarrow a(a-2)>0$
$\Leftrightarrow a>2$ hoặc $a< 0$
Kết hợp với ĐKXĐ suy ra $(a>2; a\neq 3)$ hoặc $a< 0$
ĐKXĐ: \(a\notin\left\{0;2\right\}\)
a) Ta có: \(P=\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right)\cdot\dfrac{6a}{a^2-6a+9}\)
\(=\left(\dfrac{a}{3a\left(a-2\right)}+\dfrac{2a-3}{a^2\left(2-a\right)}\right)\cdot\dfrac{6a}{a^2-6a+9}\)
\(=\left(\dfrac{a^2}{3a^2\cdot\left(a-2\right)}-\dfrac{3\left(2a-3\right)}{3a^2\cdot\left(a-2\right)}\right)\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{a^2-6a+9}{3a^2\cdot\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{\left(a-3\right)^2}{3a^2\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{2}{a\left(a-2\right)}\)
b) Để P>0 thì \(\dfrac{2}{a\left(a-2\right)}>0\)
mà 2>0
nên \(a\left(a-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a>2\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)
Vậy: Để P>0 thì \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

a,\(\dfrac{9a^2-16b^2}{4b-3a}=\dfrac{\left(3a-4b\right)\left(3a+4b\right)}{\text{4b-3a}}=-3a-4b\)
b,\(\dfrac{25a^2-30ab+9b^2}{3b-5a}=\dfrac{\left(5a-3b\right)^2}{3b-5a}=3b-5a\)
c,\(\dfrac{27a^3-27a^2+9a-1}{9a^2-6a+1}=\dfrac{27a^3-9a^2-18a^2+6a+3a-1}{9a^2-6a+1}=\dfrac{\left(3a-1\right)\left(9a^2-6a+1\right)}{9a^2-6a+1}=3a-1\)

+ Lời giải 1. Từ3 2
b 3b 5b 11 0− + + = ta được( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 2 3 2 2
3 2 2 2
2 2 2 2
b 3b 5b 11 0 b 6b 12b 8 3 b 4b 4 5 b 2 17 0
b 2 3 b 2 5 b 2 17 0 2 b 3 b 2 5 2 b 17 0
2 b 3 b 2 5 2 b 17 0 2 b 3 b 2 5 2 b 17 0
− + + = − + − + − + + − + =
− + − + − + = − − + − − − + =
− − − − + − − = − − − + − − =
Từ đó kết hợp với3 2
a 3a 5a 17 0− + − = ta suy ra được( ) ( ) ( )
2 23 2
a 3a 5a 17 2 b 3 b 2 5 2 b 17 0− + − = − − − + − − =
Do vậy ta cóa 2 b= − haya b 2+ =
+ Lời giải 2. Xéta 2 b= − thay vào vế trái của3 2
a 3a 5a 17 0− + − = , ta có( ) ( ) ( )
( )
3 23 2
2 3 2
3 2 3 2
a 3a 5a 17 2 b 3 2 b 5 2 b 17
8 12b 6b b 12 12b 3b 10 5b 17
b 3b 5b 11 b 3b 5b 11 0
− + − = − − − + − −
= − + − − + − + − −
= − + − − = − − + + =
Điều này dẫn đếna 2 b= − thỏa mãn3 2
a 3a 5a 17 0− + − = . Từ đó suy raa b 2+ = .•
Lời giải 3. Ta có( ) ( )
33 2 3 2
a 3a 5a 17 a 3a 3a 1 2a 16 a 1 2 a 1 14− + − = − + − + − = − + − − .
Đặtx a 1= − , khi đó kết hợp với giả thiết ta được3
x 2x 14 0+ − =
Ta cũng có( ) ( )
33 2 3 2
b 3b 5b 11 b 3b 3b 1 2b 12 b 1 2 b 1 14− + + = − + − + + = − + − +
Đặty b 1= − , khi đó kết hợp với giả thiết ta được3
y 2y 14 0+ + = . Kết hợp hai kết
quả ta được( ) ( )( )3 3 3 3 2 2
x 2x 14 y 2y 14 0 x y 2 x y 0 x y x xy y 2 0+ − + + + = + + + = + − + + =
Dễ thấy22 2 2
2 2 2 y 3y y 3y
x xy y 2 x xy 2 x 2 0
4 4 2 4
− + + = − + + + = + + +
.
Do đó ta đượcx y 0+ = haya 1 b 1 0− + − = nêna b 2+ = .•
Lời giải 4. Cộng theo vế các hệ thức đã cho ta được
tui ko biet
\(a^4-3a^3+6a^2-5a+3=\left(a^2-2a+3\right)\left(a^2-a+1\right)\)
có \(a^2-2a+3=\left(a-1\right)^2+2>0,a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra đpcm.