Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(A=11^{n+2}+12^{2n+1}\)
Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)
Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)
\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)
Vậy \(A\vdots 133\) (đpcm)
b) Đề bài không rõ
c)
Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)
\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)
\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)
Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)
C= 5n.52 + 26.5n + 26n. 8
= 5n(25+26) + 26n.8
= 5n.51 + 26n.8
* 192009 : 27
195 đồng dư với 10 ( mod 27 )
1910 đồng dư với 19 _____
1920 đồng dư với 10 _____
19100 đồng dư với 19 ____
19500 đồng dư với 10 ____
192000 đồng dư với 10 ____
<=> 199 dồng dư với 9 ____
=> 192009 đồng dư với 1.
* 72009 : 27
710 đồng dư với 7 ____
7100 đồng dư với 7 ____
71000 đồng dư với 7 ____
72000 đồng dư với 7 ____
<=> 79 đồng dư với 1 ____
=> 72009 đồng dư với 7 ___
=> 192009 + 72009 = 1 + 7 = 8 : 27 dư 27.
p/s: ko chắc .-.
Tim n voi so tu nhien,cmr
a,5n+2 + 26 . 5n + 82n+1 chia het cho 59
b,7 . 52n + 12 . 6n chia het cho 19
Và trong tích 4 số tự nhiên liên tiếp chắc chắn chia hết cho 3 .
=> \(n\left(n+1\right)\left(n-2\right)\left(n-1\right)\) sẽ chia hết cho cả 3 và 8
=> \(n\left(n+1\right)\left(n-2\right)\left(n-1\right)\) sẽ chia hết cho 24 .
Vậy ...
Ta có: \(m^2-2n^2=mn\)
\(\Leftrightarrow m^2-2n^2-mn=0\)
\(\Leftrightarrow m^2-n^2-n^2-mn=0\)
\(\Leftrightarrow\left(m^2-n^2\right)-\left(n^2-mn\right)=0\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)-n\left(n-m\right)=0\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)+n\left(m-n\right)=0\)
\(\Leftrightarrow\left(m-n\right)\left(m+n+n\right)=0\)
\(\Leftrightarrow\left(m-n\right)\left(m+2n\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-n=0\\m+2n=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=n\\m=-2n\end{cases}}\)
TH1: Nếu \(m=n\)\(\Rightarrow m-n=0\)\(\Rightarrow A=\frac{m-n}{m+n}=0\)
TH2: Nếu \(m=-2n\)\(\Rightarrow A=\frac{-2n-n}{-2n+n}=\frac{-3n}{-n}=3\)
Vậy nếu \(m=n\)thì \(A=0\)
nếu \(m=-2n\)thì \(A=3\)
Ta có: 8.52n + 11.6n
= 8.(52)n + 11.6n
= 8.25n + 11.6n
= 8.25n - 8.6n + 11.6n + 8.6n
= 8.(25n - 6n) + 6n.(11 + 8)
= 8.(25 - 6).(25n-1 + 25n-2.6 + ... + 25.6n-2 + 6n-1) + 6n.19
= 8.19.(25n-1 + 25n-2.6 + ... + 25.6n-2 + 6n-1) + 6n.19 chia hết cho 19 (đpcm)