Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số nguyên dương nên \(n^2+n+3>3\). Gọi r là số dư khi chia n cho 3, \(r\in\left\{0,1,2\right\}\). Nếu r=0 hoặc r=2 thì \(n^2+n+3⋮3\)
Mẫu thuẫn với giả thiết \(n^2+n+3\)là số nguyên tố. Do đó r=1 hay n chia 3 dư 1. Khi đó \(7n^2+6n+2017\)chia 3 dư 2. Mà 1 số chính phương có số dư khi chia cho 3 là 0 hoặc 1 nên => đpcm
Ta có \(n\inℕ^∗\Rightarrow n\equiv0;1;2\left(mod3\right)\left(1\right)\)
Nếu \(n\equiv0\left(mod3\right)\Rightarrow n^2+n+3\equiv0\left(mod3\right)\) mà \(n^2+n+3>3\forall n\inℕ^∗\)
=> \(n^2+n+3\) là hợp số ( mâu thuẫn )
=> \(n\equiv0\left(mod3\right)\) (loại) (2)
Nếu \(n\equiv2\left(mod3\right)\Rightarrow n^2+n+3\equiv9\equiv0\left(mod3\right)\) mà \(n^2+n+3>3\forall n\inℕ^∗\)
=> \(n^2+n+3\) là hợp số ( mâu thuẫn )
=> \(n\equiv2\left(mod3\right)\)( loại) (3)
Từ (1);(2);(3) => \(n\equiv1\left(mod3\right)\)
Hay n chia 3 dư 1
Với \(n\equiv1\left(mod3\right)\) ta có
\(7n^2+6n+2017\equiv2030\equiv2\left(mod3\right)\)
=> \(7n^2+6n+2017\) chia 3 dư 2
Lại có : Một số chính phương bất kì khi chia cho 3 dư 0 hoặc dư 1 (5)
Từ (4);(5) => \(7n^2+6n+2017\) không phải là số chính phương (đpcm)
Bài 3:(dài quá,đăng từ câu):
a)Từ giả thiết suy ra \(\frac{\left(a+b+c\right)^2}{3}\ge3\Rightarrow a+b+c\ge3\)
BĐT \(\Leftrightarrow\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)
Mà \(VT\ge3\left(a^3+b^3+c^3\right)\). Do đó ta chứng minh một BĐT chặt hơn là:
\(3\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(\Leftrightarrow\left(a^3+b^3+c^3-3abc\right)+2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(c+b\right)+ca\left(c+a\right)\right]\) (*)
Để ý rằng theo Cô si: \(a^3+b^3+c^3\ge3abc\) (1) và
\(2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\ge0\) (2)
Do \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\)
\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\). Tương tự với hai BĐT còn lại suy ra (2) đúng (3)
Từ (1) và (2) và (3) suy ra (*) đúng hay ta có đpcm.
Bài ngắn làm trước:
Bài 5: Dự đoán xảy ra đẳng thức khi a=1; b=2/3; c=4/3. Ta biến đổi như sau:
\(A=\left(4a^2+4\right)+\left(6b^2+\frac{8}{3}\right)+\left(3c^2+\frac{16}{3}\right)-12\)
\(\ge2\sqrt{4a^2.4}+2\sqrt{6b^2.\frac{8}{3}}+2\sqrt{3c^2.\frac{16}{3}}-12\)
\(=8\left(a+b+c\right)-12=8.3-12=12\)
Dấu "=" xảy ra khi ....
Bài này dùng wolfram alpha cho lẹ, đi thi không dùng được thì em dùng "cân bằng hệ số"
1/ \(a+1=\sqrt[4]{\frac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}-\sqrt[4]{\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}=\sqrt{\frac{\sqrt{3}+1}{\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
2/ \(a+b=5\Leftrightarrow\left(a+b\right)^3=125\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=125\)
\(\Rightarrow a^3+b^3=125-3ab\left(a+b\right)=125-3.1.5=110\)
3/ \(mn\left(mn+1\right)^2-\left(m+n\right)^2.mn\)
\(=mn\left(\left(mn+1\right)^2-\left(m+n\right)^2\right)\)
\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)
\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)
\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)
Do \(\left(m-1\right)m\left(m+1\right)\) và \(\left(n-1\right)n\left(n+1\right)\) đều là tích của 3 số nguyên liên tiếp nên chúng đều chia hết cho 3 \(\Rightarrow\) tích của chúng chia hết cho 36
4/
Do \(0\le x\le1\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-1\le0\end{matrix}\right.\) \(\Rightarrow x\left(x-1\right)\le0\)
\(\Leftrightarrow x^2-x\le0\Leftrightarrow x^2\le x\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
5/ Đặt \(\left\{{}\begin{matrix}\sqrt{5a+4}=x\\\sqrt{5b+4}=y\\\sqrt{5c+4}=z\end{matrix}\right.\)
Do \(a+b+c=1\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow2\le x;y;z\le3\) và \(x^2+y^2+z^2=5\left(a+b+c\right)+12=17\)
Khi đó ta có:
Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)
\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)
Tương tự: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)
Cộng vế với vế:
\(A=x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=\frac{17+18}{5}=7\)
\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Ta có: 2S=n(n+1)
Áp dụng tính chất: \(a^n+b^n⋮a+b\)với a, b là các số nguyên dương và n lẻ, ta có:
\(2T=\left(1^5+n^5\right)+\text{[}2^5+\left(n-1\right)^5\text{]}+...+\left(n^5+1^5\right)⋮\left(n+1\right)\)
Tương tự \(2T⋮n\)
Mà \(\left(n.n+1\right)=1\Rightarrow2T⋮n\left(n+1\right)hayT⋮S\)
Tổng quát:
Có thể chứng minh được:
\(A\left(k.n\right)=1^k+2^k+...+n^k⋮T\left(n\right)=1+2+3+...+n\forall n,k\in N;n\ge1\)và k lẻ
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra