K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 5 2020

$n\not\in\mathbb{N}$ thì $3^n\not\in\mathbb{Z}$

Khi đó $3^n+63$ không thể là số chính phương.

3 tháng 6 2017

đặt \(am^3=bn^3=cp^3=k^3\)

\(\Rightarrow a=\dfrac{k^3}{m^3};b=\dfrac{k^3}{n^3};c=\dfrac{k^3}{p^3}\)

VT=\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\dfrac{k}{m}+\dfrac{k}{n}+\dfrac{k}{p}=k\)

VF=\(\sqrt[3]{\dfrac{k^3}{m}+\dfrac{k^3}{n}+\dfrac{k^3}{p}}=\sqrt[3]{k^3}=k\)

do đó VT=VF, đẳng thức được chứng minh

3 tháng 6 2017

Đặt VP=A

có căn bâc 3 (am^2+bn^2+cp^2=căn bậc 3 (am^3/m+bn^3/n+cp^3/p)=căn bậc 3 (am^3(1/m+1/n+p)) (do am^3=bn^3=cp^3)

=căn bậc 3 (am^3) (do 1/m+1/n+1/p=1)=> m.căn bậc 3(a)=A=>căn bậc 3 (a)=A/m 

tương tự căn bậc 3 (b)=A/n, căn bậc 3 (p)=A/p 

Cộng theo vế => VT = A/m+A/n+A/p=A(1/m+1/n+1/p)=A=VP (do 1/m+1/n+1/p=1)

3 tháng 6 2017

Toán lớp 9 thì chịu thôi. 

NV
18 tháng 9 2019

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

17 tháng 7 2017

bài 1 câu b dẽ nhất

x^2 =y^4 +8
x^2 -y^4 =8
x^2 -(y^2)^2 =8
hiệu hai số cp =8

=> x =+-3 và y =+-1

18 tháng 7 2017

1c ẩn phụ x+y=a,xy=b (a^2 >/ 4b) giải nghiệm nguyên bth

26 tháng 6 2018

1) Vì n2 + n + 3 là số nguyên tố nên n2 + n + 3 không chia hết cho 3

=> n2 + n không chia hết cho 3 hay n(n + 1) không chia hết cho 3

=> n và n + 1 đều không chia hết cho 3

=> n chia 3 dư 1

=> n2 + n + 3 chia 3 dư 2

=> 7(n2 + n + 3) chia 3 dư 2

hay 7n2 + 7n + 21 chia 3 dư 2

Lại có n chia 3 dư 1 nên 1996 - n chia hết cho 3

Do đó 7n2 + 7n + 21 + 1996 - n chia 3 dư 2

hay 7n2 + 6n + 2017 chia 3 dư 2

=> 7n2 + 6n + 2017 không là SCP

Vậy ta có đpcm

4 tháng 12 2019

Xét :

+) \(n=3k\left(k\in N\right)\)

Ta có: \(M=2017^{3k}+2017.3k+\left(3k\right)^{2017}⋮3\)

<=> \(2017^{3k}⋮3\)vô lí vì \(2017:3\)dư 1 nên \(2017^{3k}:3\)dư 1

+) \(n=3k+1\left(k\in N\right)\)

Ta có: \(M=2017^{3k+1}+2017.\left(3k+1\right)+\left(3k+1\right)^{2017}\equiv1+1+1\equiv0\left(mod3\right)\)

=> \(M⋮3\)

+)  \(n=3k+2\left(k\in N\right)\)

Ta có: \(M=2017^{3k+2}+2017.\left(3k+2\right)+\left(3k+2\right)^{2017}\equiv1+2+2^{2017}\equiv1+2+\left(-1\right)^{2017}\equiv2\left(mod3\right)\)

=> \(M⋮̸3\)

Vậy n = 3k +1 ( k là số tự nhiên ) thì M chia hết cho 3.

3 tháng 5 2019

\(\Leftrightarrow n^3-5n=2\left(2^{m-1}-5\right)\)

\(\Leftrightarrow n\left(n^2-5\right)=2\left(2^{m-1}-5\right)\)

\(\Rightarrow\left[{}\begin{matrix}n⋮2\\n^2-5⋮2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}n=2k\left(k\in n,k>0\right)\\n^2-5=2k\left(k\in N\right)\end{matrix}\right.\)

-TH1: \(2k\left(4k^2-5\right)=2\left(2^{m-1}-5\right)\)

\(\Leftrightarrow4k^3-5k=2^{m-1}-5\)

Có: \(2^{m-1}-5⋮3\)\(\Rightarrow\left[{}\begin{matrix}k⋮3\\4k^2\equiv1\left(mod3\right)\end{matrix}\right.\)

Vậy \(2^{m-1}=4k^3-5k+5\)

...

-TH2:\(\Rightarrow2^{m-1}-5⋮2\Rightarrow m=1\)

=> Ko tìm đc m.

Nguyễn Việt Lâm Giải giúp TH1.

24 tháng 3 2020

khó quá . mik dở phần số nguyên tố lắm.

24 tháng 3 2020

\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)

\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)

\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)

\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)

\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)