Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow a=\dfrac{k^3}{m^3};b=\dfrac{k^3}{n^3};c=\dfrac{k^3}{p^3}\)
VT=\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\dfrac{k}{m}+\dfrac{k}{n}+\dfrac{k}{p}=k\)
VF=\(\sqrt[3]{\dfrac{k^3}{m}+\dfrac{k^3}{n}+\dfrac{k^3}{p}}=\sqrt[3]{k^3}=k\)
do đó VT=VF, đẳng thức được chứng minh
Đặt VP=A
có căn bâc 3 (am^2+bn^2+cp^2=căn bậc 3 (am^3/m+bn^3/n+cp^3/p)=căn bậc 3 (am^3(1/m+1/n+p)) (do am^3=bn^3=cp^3)
=căn bậc 3 (am^3) (do 1/m+1/n+1/p=1)=> m.căn bậc 3(a)=A=>căn bậc 3 (a)=A/m
tương tự căn bậc 3 (b)=A/n, căn bậc 3 (p)=A/p
Cộng theo vế => VT = A/m+A/n+A/p=A(1/m+1/n+1/p)=A=VP (do 1/m+1/n+1/p=1)
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
bài 1 câu b dẽ nhất
x^2 =y^4 +8
x^2 -y^4 =8
x^2 -(y^2)^2 =8
hiệu hai số cp =8
=> x =+-3 và y =+-1
1) Vì n2 + n + 3 là số nguyên tố nên n2 + n + 3 không chia hết cho 3
=> n2 + n không chia hết cho 3 hay n(n + 1) không chia hết cho 3
=> n và n + 1 đều không chia hết cho 3
=> n chia 3 dư 1
=> n2 + n + 3 chia 3 dư 2
=> 7(n2 + n + 3) chia 3 dư 2
hay 7n2 + 7n + 21 chia 3 dư 2
Lại có n chia 3 dư 1 nên 1996 - n chia hết cho 3
Do đó 7n2 + 7n + 21 + 1996 - n chia 3 dư 2
hay 7n2 + 6n + 2017 chia 3 dư 2
=> 7n2 + 6n + 2017 không là SCP
Vậy ta có đpcm
Xét :
+) \(n=3k\left(k\in N\right)\)
Ta có: \(M=2017^{3k}+2017.3k+\left(3k\right)^{2017}⋮3\)
<=> \(2017^{3k}⋮3\)vô lí vì \(2017:3\)dư 1 nên \(2017^{3k}:3\)dư 1
+) \(n=3k+1\left(k\in N\right)\)
Ta có: \(M=2017^{3k+1}+2017.\left(3k+1\right)+\left(3k+1\right)^{2017}\equiv1+1+1\equiv0\left(mod3\right)\)
=> \(M⋮3\)
+) \(n=3k+2\left(k\in N\right)\)
Ta có: \(M=2017^{3k+2}+2017.\left(3k+2\right)+\left(3k+2\right)^{2017}\equiv1+2+2^{2017}\equiv1+2+\left(-1\right)^{2017}\equiv2\left(mod3\right)\)
=> \(M⋮̸3\)
Vậy n = 3k +1 ( k là số tự nhiên ) thì M chia hết cho 3.
\(\Leftrightarrow n^3-5n=2\left(2^{m-1}-5\right)\)
\(\Leftrightarrow n\left(n^2-5\right)=2\left(2^{m-1}-5\right)\)
\(\Rightarrow\left[{}\begin{matrix}n⋮2\\n^2-5⋮2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}n=2k\left(k\in n,k>0\right)\\n^2-5=2k\left(k\in N\right)\end{matrix}\right.\)
-TH1: \(2k\left(4k^2-5\right)=2\left(2^{m-1}-5\right)\)
\(\Leftrightarrow4k^3-5k=2^{m-1}-5\)
Có: \(2^{m-1}-5⋮3\)\(\Rightarrow\left[{}\begin{matrix}k⋮3\\4k^2\equiv1\left(mod3\right)\end{matrix}\right.\)
Vậy \(2^{m-1}=4k^3-5k+5\)
...
-TH2:\(\Rightarrow2^{m-1}-5⋮2\Rightarrow m=1\)
=> Ko tìm đc m.
Nguyễn Việt Lâm Giải giúp TH1.
\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)
\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)
\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)
\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)
\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)
$n\not\in\mathbb{N}$ thì $3^n\not\in\mathbb{Z}$
Khi đó $3^n+63$ không thể là số chính phương.