Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3=3^n.3.5.2+2^{n+1}.2.3\)\(=\left(5.3^n+2^{n+1}\right).6⋮6\)
Vậy .............
Bài đầu đơn giản rồi , tự tính nhé <3
Bài 2
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\)
Vậy.....
Ta có :
\(A=n^6-n^4+2n^3+2n^2\)
\(A=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)
\(A=n^4\left(n+1\right)\left(n-1\right)+2n^2\left(n+1\right)\)
\(A=n^2\left(n+1\right).\left[n^2\left(n-1\right)+2\right]\)
\(A=n^2\left(n+1\right).\left(n^3-n^2+2\right)\)
\(A=n^2\left(n+1\right).\left(n^3+1+1-n^2\right)\)
\(A=n^2\left(n+1\right).\left(n+1\right).\left(n^2-n+1-n+1\right)\)
\(A=n^2\left(n+1\right)^2.\left(n^2-2n+2\right)\)
Với \(n\in N\), n > 1 thì \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
Và \(n^2-2n+2=n^2-2\left(n-1\right)< n^2\)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+n< n^2\)
Vậy A không phải số chính phương
Ta có: \(\left(2n-1\right)^3-2n+1=\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left(4n^2-4n+1-1\right)\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Ta có: \(4⋮4\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮4\) (1)
Mà \(n\left(n-1\right)\) là 2 số tự nhiên liên tiếp nên chia hết cho 2
\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮2\) (1)
Từ (1) và (2):
\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮8\)
Hay: \(A⋮8\)
=.= hok tốt!!
a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)
\(A=x\cdot\left(-1\right)\cdot x\)
\(A=-x^2\)
b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)
Xét :
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)
\(\frac{x}{8}=6\Leftrightarrow x=48\)
\(\frac{y}{12}=6\Leftrightarrow y=72\)
\(\frac{z}{15}=6\Leftrightarrow z=90\)
\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)
ta có
\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)
\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)
ta lại có
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)
\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)
ta kết hợp (1) và (2)
\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)
theo tính chất dãy tỉ số = nhau
có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)
thay vào
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
Đặt A=1.2+2.3+3.4+...+n(n+1)
=>3A=(3−0).1.2+(4−1).2.3+...+(n+2−n+1).n(n+1)
=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)
=>3A=n(n+1)(n+2)
=>A=n(n+1)(n+2):3(đpcm)
Ta có: 3n+3+3n+1+2n+3+2n+2=3n(33+3)+2n+1(22+2)=3n.30+2n+1.6=6.(3n.5+2n+1) => Chia hết cho 6 với mọi n
Có ai đọc câu hỏi ko vậy? hay đọc mà thiếu chữ quy nạp :((