Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 2x^3 -5x^2 + 8x -3
= 2x^3 -x^2 -4x^2 +2x +6x -3
= x^2 .[2x-1] - 2x[2x-1] +3. [2x-1]
= [x^2-2x+3] [2x-1]
b/ 3x^3 - 14x^2 +4x +3
= 3x^3 +x^2 -15 x^2 -5x +9x +3
= x^2 [3x+1] -5.x [3x+1] +3. [3x+1]
= [x^2 -5x+3] [3x+1]
c/ Đặt C = 12x^2 + 5 x -12 y^2 +12y -10xy -3
= -[12y^2+10xy+3-12x^2-5x-12y]
12y^2 + 10xy +3-12x^2-5x-12y = 18xy +12y^2 -6y - 12x^2 -8xy +4x -9x -6y +3
= 6y [3x+2y-1] - 4.x[3x+2y-1] -3.[3x+2y-1]
= [6y-4x-3] [3x+2y-1]
=> C = -[6y-4x-3]. [ 3x+2y-1]
tom lai minh ra
12x2+5x-12y2+12y-10xy-3=12(x+(2y-1)/3)(x-(6y-3)/4)) co dung ko nha.
c, x4+6x3+11x2+6x+1
=x4+6x3+9x2+2x2+6x+1
=x4+9x2+1+6x3+2x2+6x
=(x2)2+(3x)2+12+2.x2.3x+2.x2.1+2.3x.1 (1)
Áp dụng hằng đẳng thức (a+b+c)2=a2+b2+c2+2ab+2ac+2bc
=> (1)=(x2+3x+1)2
Câu a nhé bạn:
a, 3x2−22xy−4x+8y+7y2+1
=3x2-21xy-xy-3x-x+7y+y+7y2+1
=(3x2−21xy−3x)−(xy-7y2-y)−(x-7y-1)
=3x(x−7y−1)−y(x−7y−1)−(x−7y−1)
=(3x−y−1)(x−7y−1)
1) A=\(-2\left(x^2-2x+1\right)-\left(y^2-2y+1\right)+8\)
\(=-2\left(x-1\right)^2-\left(y-1\right)^2+8\)
Vì \(\hept{\begin{cases}-2\left(x-1\right)^2\le0;\forall x\\-\left(y-1\right)^2\le0;\forall y\end{cases}}\)
\(\Rightarrow-2\left(x-1\right)^2-\left(y-1\right)^2\le0;\forall x,y\)
\(\Rightarrow-2\left(x-1\right)^2-\left(y-1\right)^2+8\le0+8;\forall x,y\)
Hay \(A\le8;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}-2\left(x-1\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy MAX A=8 \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Phần kia tương tự
1> A = -2x2 - y2 -2xy + 4x + 2y + 5
= -(x2 + y2 + 2xy - 2x - 2y + 1)-(x2 - 2x + 1)+7
= -(x + y - 1)2 - (x-1)2 + 7
Ta thấy: \(-\left(x+y-1\right)^2\le0;-\left(x-1\right)^2\le0\)
Nên A \(\le\)7. Dấu "=" xảy ra <=> x = 1 , y = 0
2> Ghép từng cặp x vs x; y vs y ; z vs z
\(2x^2+13y^2-10xy-4x+12y+5\)
\(=\frac{1}{2}\left[4x^2+26y^2-20xy-8x+24y+10\right]\)
\(=\frac{1}{2}\left[\left(4x^2+25y^2+4-20xy+20y-8x\right)+y^2+4y+4+2\right]\)
\(=\frac{1}{2}\left[\left(2x\right)^2+\left(5y\right)^2+2^2-2.2x.5y+2.5y.2-2.2x.2+\left(y+2\right)^2+2\right]\)
\(=\frac{1}{2}\left[\left(2x-5y-2\right)^2+\left(y+2\right)^2+2\right]>0\forall x;y\)