Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(11^{n+2}+12^{2n+1}\)
= \(11^n.121+12^{2n}.12\)
= \(11^n.\left(133-12\right)+144^n.12\)
= \(11^n.\left(133-12\right)+\left(133+11\right)^n.12\) (1)
Ta có: \(\left(133+11\right)^n=133^n+133^{n-1}.11+...+133.11^{n-1}+11^n⋮133\)(vì mỗi số hạng đều chứa thừa số 133)
Ta kí hiệu số chia hết cho 133 là B (133).
Do đó \(\left(133+11\right)^n=B\left(133\right)+11^n\)
Thay vào (1), ta được:
\(11^n.133-11^n.12+\left[B\left(133\right)+11^n\right].12\)
= \(B\left(133\right)-11^n.12+B\left(133\right)+11^n.12\)
= B (133)
Vậy: \(11^{n+2}+12^{2n+1}⋮133\).
b) \(5^{n+2}+26.5^n+8^{2n+1}\)
= \(5^n.25+26.5^n+8^{2n}.8\)
= \(5^n.\left(25+26\right)+64^n.8\)
= \(5^n.\left(59-8\right)+\left(59+5\right)^n.8\) (1)
Ta có: \(\left(59+5\right)^n=59^n+59^{n-1}.5+...+59.5^{n-1}+5^n⋮59\)(vì mỗi số hạng đều chứa thừa số 59)
Ta kí hiệu số chia hết cho 59 là B (59).
Do đó \(\left(59+5\right)^n=B\left(59\right)+5^n\)
Thay vào (1), ta được:
\(5^n.59-5^n.8+\left[B\left(59\right)+5^n\right].8\)
= \(B\left(59\right)-5^n.8+B\left(59\right)+5^n.8\)
= B (59)
Vậy: \(5^{n+2}+26.5^n+8^{2n+1}⋮59\)
(Đề bài còn thiếu \(n\in N\))
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
Ta có \(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10=5\left(n^2+n+2\right)⋮5\)với mọi n
Vậy \(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)chia hết cho 5