\(C=\left(\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x-x^2}{9-x^2}\right):\frac{x}{x+3}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

Đ e o o o o o = Đéo

5 tháng 8 2019

Mk chỉ cần câu trả lời thôi nên đừng vào cmt bậy nha các bác ;)))

I don't now

...............

.................

28 tháng 7 2018

a) ĐK : \(a\ne\pm1\);  \(a\ne\frac{-1}{2}\)

\(P=[\frac{\left(x-1\right)\left(1-x\right)}{1-x^2}+\frac{x\left(1+x\right)}{1-x^2}-\frac{3x+1}{1-x^2}]:\frac{2x+1}{x^2-1}\)

\(=\left(\frac{-x^2+2x-1+x^2+x-3x-1}{1-x^2}\right):\frac{2x+1}{x^2+1}\)

\(=\left(\frac{-2}{1-x^2}\right):\frac{-2x-1}{1-x^2}\)

\(=\frac{2}{2x+1}\)

b)

\(\frac{2}{2x+1}=\frac{3}{x-1}\)

\(\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)

<=> x=-5/4  (nhận)

c) P>1 

\(\Leftrightarrow\frac{2}{2x+1}>1\)

\(\Leftrightarrow2x+1>0\)

Khi đó : 2 > 2x+1

<=>  x < 1/2

mà x thuộc Z nên 

\(P>1\Leftrightarrow x\hept{\begin{cases}x\in Z\\x\ne-1\\x\le0\end{cases}}\)

28 tháng 7 2018

a/  \(P=\left(\frac{x-1}{x+1}-\frac{x}{x-1}-\frac{3x+1}{1-x^2}\right):\frac{2x+1}{x^2-1}\)

\(P=\left(\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x+1}{x^2-1}\right):\frac{2x+1}{x^2-1}\)

\(P=\left(\frac{x^2-2x+1}{x^2-1}-\frac{x^2+x}{x^2-1}+\frac{3x+1}{x^2-1}\right).\frac{x^2-1}{2x+1}\)

\(P=\frac{x^2-2x+1-x^2-x+3x+1}{x^2-1}.\frac{x^2-1}{2x+1}\)

\(P=\frac{2}{2x+1}\)

b/ để \(P=\frac{3}{x-1}\)

<=> \(\frac{2}{2x+1}=\frac{3}{x-1}\)

=> \(2x-2=6x+3\)

<=> \(2x-6x=3+2\)

<=> \(-4x=5\)

<=> \(x=\frac{-5}{4}\)

c/ để \(P>1\)

<=> \(\frac{2}{2x+1}\)\(>1\)

<=> \(\frac{2}{2x+1}-1>0\)

<=> \(\frac{2}{2x+1}-\frac{2x+1}{2x+1}>0\)

<=> \(\frac{3-2x}{2x+1}>0\)

<=> \(\hept{\begin{cases}3-2x>0\\2x+1>0\end{cases}}\)hoặc \(\hept{\begin{cases}3-2x< 0\\2x+1< 0\end{cases}}\)

<=> \(\hept{\begin{cases}x< \frac{3}{2}\\x>\frac{-1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x>\frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)

<=> \(\frac{-1}{2}< x< \frac{3}{2}\)hoặc \(x\in\varnothing\)

vậy \(\frac{-1}{2}< x< \frac{3}{2}\)thì \(P< 1\)

học tốt

10 tháng 12 2020

\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

 \(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)

\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)

\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)

Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)

c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z

=> -2x ⋮ x + 1

=> -2x - 2 + 2 ⋮ x + 1

=> -2( x + 1 ) + 2 ⋮ x + 1

Vì -2( x + 1 ) ⋮ ( x + 1 )

=> 2 ⋮ x + 1

=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }

x+11-12-2
x0-21-3

Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

Vậy x ∈ { -3 ; -2 ; 0 ; 1 }

16 tháng 7 2017

b. Sử dụng các hằng đẳng thức

 \(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)

và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Do (a - b) + (b - c) + (c - a) =  0 nên áp dụng hđt  \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:

\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)

16 tháng 7 2017

Bài 1 :

\(b,ax^2+3ax+9=a^2\) 

\(\Leftrightarrow a^2x+3ax+9-a^2=0\) 

\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\) 

\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)

Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\) 

\(\Leftrightarrow ax=a-3\) 

Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\) 

28 tháng 6 2017

\(B=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{x+2}\right):\frac{x^2-3x}{2x^2-x^3}\left(ĐKXĐ:x\ne2;-2;0\right)\)

a)\(B=\left(-\frac{\left(x+2\right)^2}{x^2-4}-\frac{4x^2}{x^2-4}+\frac{\left(x-2\right)^2}{x^2-4}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(B=\left(\frac{-\left(x+2\right)^2-4x^2+\left(x-2\right)^2}{x^2-4}\right).\frac{-x\left(x-2\right)}{\left(x-3\right)}\)

\(B=\left(\frac{-x^2-4x-4-4x^2+x-4x+4}{\left(x-2\right)\left(x+2\right)}\right).-\frac{x\left(x-2\right)}{x-3}\)

\(B=\frac{-5x^2-7x}{\left(x+2\right)}.\frac{-x}{x-3}\)

\(B=\frac{\left(-5x^2-7x\right)-x}{\left(x+2\right)\left(x-3\right)}\)

\(B=\frac{5x^3+7x^2}{\left(x+2\right)\left(x+3\right)}\)