Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
\(A=\dfrac{x-2014}{\dfrac{x^2-4x+4-x^2-2x-1}{\left(x+1\right)\left(x-2\right)}:\dfrac{x^2-4x+4+x^2+2x+1}{\left(x+1\right)\left(x-2\right)}}\)
\(=\dfrac{x-2014}{\dfrac{-6x+3}{\left(x+1\right)\left(x-2\right)}\cdot\dfrac{\left(x+1\right)\left(x-2\right)}{2x^2-2x+5}}\)
\(=\left(x-2014\right)\cdot\dfrac{2x^2-2x+5}{-6x+3}\)
Để A>=0 thì \(\left(x-2014\right)\left(-6x+3\right)>=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2014\right)< =0\)
=>1/2<x<=2014
\(P=\left(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x-1}\right):\dfrac{x^2+2x+1}{x-1}\)
\(=\left(\dfrac{x^3+2x}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\dfrac{x-1}{x^2+2x+1}\)
\(=\dfrac{x^3+2x+2x^2+2x}{\left(x+1\right)\left(x^2-x+1\right)}.\dfrac{x-1}{x^2+2x+1}\)
\(=\dfrac{x^3+2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\dfrac{x-1}{x^2+2x+1}\)
Bài 2:
a: \(A=\dfrac{3}{2\left(x+1\right)}+\dfrac{10x}{2\left(x-1\right)\left(x+1\right)}-\dfrac{5}{2\left(x-1\right)}\)
\(=\dfrac{3x-3+10x-5x-5}{2\left(x-1\right)\left(x+1\right)}=\dfrac{8x-8}{2\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x+1}\)
b: Để P/2=3/x^2+2 thì \(\dfrac{4}{2x+2}=\dfrac{3}{x^2+2}\)
\(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{3}{x^2+2}\)
=>\(2x^2+4-3x-3=0\)
=>2x^2-3x+1=0
=>(x-1)(2x-1)=0
=>x=1/2(nhận) hoặc x=1(loại)
a: \(\Leftrightarrow\dfrac{1}{4}x-1+\dfrac{2}{3}x-2-\dfrac{5}{8}x-1=5\)
\(\Leftrightarrow x\cdot\dfrac{7}{24}-4=5\)
\(\Leftrightarrow x\cdot\dfrac{7}{24}=9\)
hay x=216/7
b: \(\Leftrightarrow2x-10-\left[3x-13-3+5x-4\right]=7\)
\(\Leftrightarrow2x-10-\left(8x-20\right)=7\)
=>2x-10-8x+20=7
=>-6x+10=7
=>-6x=-3
hay x=1/2
c: \(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=6+5=11\)
\(\Leftrightarrow\left|2x-1\right|-3=-\dfrac{11}{2}\)
=>|2x-1|=-5/2(vô lý)
a ) Để \(\dfrac{3}{-x^2+2x+4}\) đạt GTlN thì :
\(-x^2+2x+4\) phải đạt GTNN ( chắc ai cũng biết )
Ta có :
\(-x^2+2x+4\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2-5\)
Tới đây chắc bạn hỉu rồi nhỉ ?
+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)a: \(A=\dfrac{1}{x^2+x+1}+\dfrac{2}{x-1}-\dfrac{x^2+2x}{x^3-1}\)
\(=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
b: Để A là số nguyên thì \(x-1\in\left\{1;-1\right\}\)
hay \(x\in\left\{2;0\right\}\)
\(C=\dfrac{-\left(x+1\right)+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(=\dfrac{2}{1-2x}\)
\(C=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(\Rightarrow C=\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=\dfrac{1+x+2\left(1-x\right)-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{-\left(1-x\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=-2.\dfrac{-1}{1-2x}\)
\(\Rightarrow C=\dfrac{2}{1-2x}\)