\(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{\text{5-x}}{\text{1-x}^{\text{2}}}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021

\(C=\dfrac{-\left(x+1\right)+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\dfrac{2}{1-2x}\)

22 tháng 11 2021

\(C=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)

\(\Rightarrow C=\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(\Rightarrow C=\dfrac{1+x+2\left(1-x\right)-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(\Rightarrow C=\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{-\left(1-x\right)\left(x+1\right)}{1-2x}\)

\(\Rightarrow C=-2.\dfrac{-1}{1-2x}\)

\(\Rightarrow C=\dfrac{2}{1-2x}\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

\(A=\dfrac{x-2014}{\dfrac{x^2-4x+4-x^2-2x-1}{\left(x+1\right)\left(x-2\right)}:\dfrac{x^2-4x+4+x^2+2x+1}{\left(x+1\right)\left(x-2\right)}}\)

\(=\dfrac{x-2014}{\dfrac{-6x+3}{\left(x+1\right)\left(x-2\right)}\cdot\dfrac{\left(x+1\right)\left(x-2\right)}{2x^2-2x+5}}\)

\(=\left(x-2014\right)\cdot\dfrac{2x^2-2x+5}{-6x+3}\)

Để A>=0 thì \(\left(x-2014\right)\left(-6x+3\right)>=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2014\right)< =0\)

=>1/2<x<=2014

15 tháng 12 2017

\(P=\left(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x-1}\right):\dfrac{x^2+2x+1}{x-1}\)

\(=\left(\dfrac{x^3+2x}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\dfrac{x-1}{x^2+2x+1}\)

\(=\dfrac{x^3+2x+2x^2+2x}{\left(x+1\right)\left(x^2-x+1\right)}.\dfrac{x-1}{x^2+2x+1}\)

\(=\dfrac{x^3+2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\dfrac{x-1}{x^2+2x+1}\)

15 tháng 12 2017

mk cx ghĩ như bạn mà lm ròi nhìn thấy sai sai cái chi ák

Bài 2: 

a: \(A=\dfrac{3}{2\left(x+1\right)}+\dfrac{10x}{2\left(x-1\right)\left(x+1\right)}-\dfrac{5}{2\left(x-1\right)}\)

\(=\dfrac{3x-3+10x-5x-5}{2\left(x-1\right)\left(x+1\right)}=\dfrac{8x-8}{2\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x+1}\)

b: Để P/2=3/x^2+2 thì \(\dfrac{4}{2x+2}=\dfrac{3}{x^2+2}\)

\(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{3}{x^2+2}\)

=>\(2x^2+4-3x-3=0\)

=>2x^2-3x+1=0

=>(x-1)(2x-1)=0

=>x=1/2(nhận) hoặc x=1(loại)

a: \(\Leftrightarrow\dfrac{1}{4}x-1+\dfrac{2}{3}x-2-\dfrac{5}{8}x-1=5\)

\(\Leftrightarrow x\cdot\dfrac{7}{24}-4=5\)

\(\Leftrightarrow x\cdot\dfrac{7}{24}=9\)

hay x=216/7

b: \(\Leftrightarrow2x-10-\left[3x-13-3+5x-4\right]=7\)

\(\Leftrightarrow2x-10-\left(8x-20\right)=7\)

=>2x-10-8x+20=7

=>-6x+10=7

=>-6x=-3

hay x=1/2

c: \(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=6+5=11\)

\(\Leftrightarrow\left|2x-1\right|-3=-\dfrac{11}{2}\)

=>|2x-1|=-5/2(vô lý)

11 tháng 11 2017

a ) Để \(\dfrac{3}{-x^2+2x+4}\) đạt GTlN thì :

\(-x^2+2x+4\) phải đạt GTNN ( chắc ai cũng biết )

Ta có :

\(-x^2+2x+4\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(x-1\right)^2-5\)

Tới đây chắc bạn hỉu rồi nhỉ ?

11 tháng 11 2017

Mình cảm ơn bạn nhiều nhé.

20 tháng 11 2017

+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)

a: \(A=\dfrac{1}{x^2+x+1}+\dfrac{2}{x-1}-\dfrac{x^2+2x}{x^3-1}\)

\(=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

b: Để A là số nguyên thì \(x-1\in\left\{1;-1\right\}\)

hay \(x\in\left\{2;0\right\}\)