\(C=\left(1+\frac{2}{3}\right).\left(1+\frac{2}{5}\right).\left(1+\frac{2}{7}\right).....\left(1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

C=(1+2/3).(1+2/5).(1+2/7)......(1+2/2009).(1+2/2011)

C=5/3.7/5.9/7......2011/2009.2013/2011

C=5.7.9.....2013/3.5.7.....2009.2011

C=2013/3

7 tháng 5 2017

\(C=\left(1+\frac{2}{3}\right).\left(1+\frac{2}{5}\right).\left(1+\frac{2}{7}\right).....\left(1+\frac{2}{2009}\right).\left(1+\frac{2}{2011}\right)\)

\(C=\frac{5}{3}.\frac{7}{5}.\frac{9}{7}.....\frac{2011}{2009}.\frac{2013}{2011}\)

\(C=\frac{\left(5.7.9.....2011\right).2013}{3.\left(5.7.9.....2009.2011\right)}\)

\(C=\frac{2013}{3}\)

Có đúng k bn

22 tháng 3 2018

A = 0 

B= 3/11

C= -1 

D= -9/10

7 tháng 4 2018

a) =\(\frac{1}{2}.\frac{2}{3}.....\frac{2017}{2018}=\frac{1.2.....2017}{2.3.4.....2018}=\frac{1}{2018}\)

9 tháng 4 2018

a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}.\frac{2}{3}...\frac{2017}{2018}\)

\(=\frac{1.2...2017}{2.3...2018}\)

\(=\frac{1}{2018}\)

b) \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{190}\right)\)

\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{189}{190}\)

\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{378}{380}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{7.4}{5.6}...\frac{18.21}{19.20}\)

\(=\frac{\left(1.2.3...18\right).\left(4.5.6...21\right)}{\left(2.3.4...19\right).\left(3.4.5...20\right)}\)

\(=\frac{1.21}{19.3}\)

\(=\frac{21}{57}\)

c) \(\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)...\left(1+\frac{7}{2009}\right)\)

\(=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}.\frac{56}{48}...\frac{2016}{2009}\)

mk ko bít làm câu c ! xin lỗi bn nha! bn tự nghĩ cách làm câu c giúp mk nhé!

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)