Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có \(M=\left|x+1\right|+\left|2x-10\right|+\left|2x-7\right|+\left|x-\frac{11}{2}\right|\)
\(=\left|x+1\right|+\left|\frac{11}{2}-x\right|+\left|2x-10\right|+\left|7-2x\right|\)
\(\ge\left|\frac{13}{2}\right|+\left|-3\right|=\frac{19}{2}\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}\left(x+1\right)\left(\frac{11}{2}-x\right)\ge0\\\left(2x-10\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow\frac{7}{2}\le x\le5\)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Bài 1:
a) \(A=-3+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
\(A=-3+\frac{1}{1+\frac{1}{\frac{4}{3}}}\)
\(A=-3+\frac{1}{1+\frac{3}{4}}\)
\(A=-3+\frac{1}{\frac{7}{4}}\)
\(A=-3+\frac{4}{7}=-\frac{17}{7}\)
#)Giải :
Câu 1 :
a)
- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0
- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0
=> c = 0
=> |a| = b2.b = b3
=> b3 ≥ 0
=> b là số nguyên dương
=> a là số nguyên âm
Vậy a là số nguyên dương, b là số nguyên âm và c = 0
làm kỷ niệm bạn câu 1 (làm chân phương)
\(M=\left|x+1\right|+2\left|x-5\right|+\left|2x-7\right|+\left|\dfrac{x-11}{2}\right|\)
\(2M=\left|2x+2\right|+\left|4x-14\right|+\left|4x-20\right|+\left|x-11\right|\)
\(\left\{{}\begin{matrix}x< -1;M_1=\left(-2x-2\right)+\left(-4x+14\right)+\left(-4x+20\right)+\left(-x+11\right)=-11x+43\\-1\le x< \dfrac{7}{2};M_2=\left(2x+2\right)+\left(-4x+14\right)+\left(-4x+20\right)+\left(-x+11\right)=-7x+47\\\dfrac{7}{2}\le x< 5;M_3=\left(2x+2\right)+\left(4x-14\right)+\left(-4x+20\right)+\left(-x+11\right)=x+19\\5\le x< 11;M_4=\left(2x+2\right)+\left(4x-14\right)+\left(4x-20\right)+\left(-x+11\right)=9x-21\end{matrix}\right.\)
\(11\le x;M_5=\left(2x+2\right)+\left(4x-14\right)+\left(4x-20\right)+\left(x-11\right)=11x-43\)
Min =Min[M1;M2;M3;M4;M5]
M1 ; M2 không có min
min M3 =M(7/2) =7/2+19 =45/2
min M4 =M(5) =9.5 -21 =24
Min M5 =M(11) =11.11-43=78
=> GTNN M =\(2.M_3=45\)
Ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+..+n\right)^2\)
Đặt \(A=1^3+2^3+...+n^3\)
Với n=1\(\Rightarrow A\) đúng
Giả sử n=k đúng
\(\Rightarrow A=\left(1+2+...+k\right)^2\)
Cần cm \(n=k+1\) đúng
Thật vậy ta có:\(A=1^3+2^3+...+k^3+\left(k+1\right)^3\)
\(A=\left(1+2+...+k\right)^2+\left(k+1\right)^3\)(1)
Cần cm:\(\left(k+1\right)^3=2\left(k+1\right)\left(1+2+...+k\right)+\left(k+1\right)^2\)
\(\Leftrightarrow\left(k+1\right)^2\left(k+1-1\right)=2\left(k+1\right)\cdot\dfrac{k\left(k+1\right)}{2}\)
\(\Leftrightarrow\left(k+1\right)^2k=\left(k+1\right)^2k\)(luôn đúng)
\(\Rightarrow\left(1\right)\) đúng \(\Rightarrowđpcm\)
Vậy \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)