Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=4x-x^2-5\)
\(-A=x^2-4x+5\)
\(-A=\left(x^2-4x+4\right)+1\)
\(-A=\left(x-2\right)^2+1\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\)
\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)
b) Đặt \(B=x^2-2x+5\)
\(B=\left(x^2-2x+1\right)+4\)
\(B=\left(x-1\right)^2+4\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\left(đpcm\right)\)
a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)
b) x2 -2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0 với mọi x (đpcm)
a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)
hay \(x^2-6x+10>0\left(đpcm\right)\)
b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)
hay \(4x-x^2-5< 0\left(đpcm\right)\)
a) Ta có:
\(x^2-6x+10=x^2-6x+9+1\) 1
\(=\left(x-3\right)^2+1\)
vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0
\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\)
=>đpcm
b)
\(4x-x^2-5=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\)
vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0
=>..........
vậy...
hc tốt
a) x^2 - 8x + 20
=x2-8x+16+4
=x2-2.x.4+42+4
=(x-4)2+4 >0 với mọi x (vì (x-4)2\(\ge\)0)
b) 4x^2 - 12x + 11
=(2x)2-2.2x.3+9+2
=(2x)2-2.2x.3+32+2
=(2x-3)3+2>0 với mọi x (vì (2x-3)2\(\ge\)0)
x2 +2x+5= ( x2+2x+1) +4= (x+1)2 +4
vì (x+1)2 \(\ge\)0 với mọi x nên (x+1)2+4 >0
hay x2+2x+5>0 (điều phải chứng minh)
( dấu = xảy ra \(\Leftrightarrow\)x+1=0 \(\Leftrightarrow\)x=-1)
Giải:
a) \(x^2-6x+10\)
\(=x^2+6x+9+1\)
\(=\left(x+3\right)^2+1\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
Nên \(\left(x+3\right)^2+1\ge1\forall x\)
Vậy \(\left(x+3\right)^2+1>0\forall x\).
b) \(4x-x^2-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x+2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
Nên \(-\left(x+2\right)^2-1\le-1\forall x\)
Vậy \(-\left(x+2\right)^2-1< 0\forall x\).
Chúc bạn học tốt!
\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)
\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)
a) Có x2-6x+10=(x2-2.x.3+32)+1=(x-3)2+1
Vì (x-3)2 ≥0 với mọi x
nên (x-3)2+1>0 với mọi x
b) Có 4x-x2-5=-(x2-4x+4)-1=-(x2-2.x.2+22)-1=-(x-2)2-1
Vì -(x-2)2≤0 với mọi x
nên -(x-2)2-1<0 với mọi x
c)Gỉa sử (x+5)(x-3)+20>0 là đúng thì
⇔x2-3x+5x-15+20>0
⇔x2+2x+5>0 ⇔(x2+2x.1+12)+4>0 ⇔(x+1)2+4>0
Vì (x+1)2 >=0 với mọi x
Nên (x+1)2+4>0 là đúng
Vậy (x+5)(x-3)+20>0 với mọi x
x2-6x+10
=x2-6x+9+1
=(x-3)2+1>0 với mọi x (vì (x-3)2\(\ge\)0 với mọi x)
4x-x2-5
= -x2+4x-4-1
= -(x2-4x+4)-1
= -(x-2)2-1<0 với mọi x(vì -(x-2)2<0 với mọi x)
Đặt \(t=x-1\)
Thế vào:\(t\left(t-1\right)+5=t^2-t+5\)
\(=t^2-2.\frac{1}{2}.t+\left(\frac{1}{2}\right)^2+5-\frac{1}{4}\)
\(=\left(t-\frac{1}{2}\right)^2+\frac{19}{4}>0\)
Ta có :
\(VT=\left(x-1\right)\left(x-2\right)+5=x^2-x-2x+2+5=x^2-3x+7\)
\(VT=\left(x^2-3x+\frac{9}{4}\right)+\frac{19}{4}=\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]+\frac{19}{4}=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\)
Vậy \(\left(x-1\right)\left(x-2\right)+5>0\) với mọi x
Chúc bạn học tốt ~