Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử phân số trên chưa tối giản
Gọi \(ƯCLN\)(2n + 5 ; n + 3) là : d( d > 1)
\(\Rightarrow2n+5⋮d;n+3⋮d\)
\(\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy p/s trên tối giản
Bài giải:
Để \(\frac{2n+5}{n+3}\)là phần số tối giản <=>ƯCLN(2n + 5; n + 3) = {1; -1}
Gọi d là ƯCLN(2n + 5; n + 3)
=> 2n + 5 \(⋮\)d
=> n + 3 \(⋮\)d => 2(n + 3) \(⋮\) d => 2n + 6\(⋮\)d
=> (2n + 6) - (2n + 5) = 1 \(⋮\)d => d \(\in\){1; -1}
Vậy 2n + 5/n + 3 là phân số tối giản
Gọi \(d=UCLN\left(n+1,2n+3\right)\) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) \(⋮\)d
1 \(⋮\)d
=> d = 1
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
Gọi d là ƯCLN\((n+1,2n+3)\)
Ta có : \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2(n+1)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\((2n+3)-(2n+2)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Do đó : \(\frac{n+1}{2n+3}\)là phân số tối giản\((đpcm)\)
Gọi ƯCLN của n+2 và 2n+3 là d
Ta có:
\(n+2⋮d;2n+3⋮d\)
\(\Rightarrow2n+4⋮d;2n+3⋮d\)
\(\Rightarrow2n+4-2n-3⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Suy ra \(\left(n+2;2n+3\right)=1\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản
ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1
Gọi ƯCLN(n,2n+3) là :d
suy ra: n chia hết cho d và 2n+3 chia hết cho d
suy ra : (2n+3) - 2n chia hết cho d
3 chia hết cho d
suy ra: d thuộc Ư(3) =( 3,1)
ta có: 2n +3 chia hết cho 3
2n chia hết cho 3
mà (n,3)=1 nên n chia hết cho 3
vậy khi n=3k thì (n,2n+3) = 3 (k thuộc N)
suy ra : n ko bằng 3k thì (n,2n+3)=1
vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản
a/ n rút gọn đi còn 1/2+3 bằng 1/5
b/rút gọn 3a hết còn 1/1 vậy bằng 1
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
Bài 1: Chứng tỏ rằng phân số:
A=\(\frac{n+3}{2n+5}\)là phân số tối giản với mọi số tự nhiên n thuộc N
Gọi d là UCLN(n+3,2n+5)
=> n+3:d , 2n+5:d
=>2n+6:d , 2n+5:d
=>2n+6 - 2n+5 :d
=> 1: d
Vậy n+3/2n+5 là phan so toi gian
Minh nhanh nhat nen cho minh nhe
gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
Gọi \(ƯCLN\left(2n+5,n+3\right)=a\text{ }\)
Ta có:
\(\hept{\begin{cases}2n+5⋮a\\n+3⋮a\end{cases}\Rightarrow}\hept{\begin{cases}2n+5⋮a\\2.\left(n+3\right)⋮a\end{cases}\Rightarrow\hept{\begin{cases}2n+5⋮a\\2n+6⋮a\end{cases}}}\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮a\)
\(\Leftrightarrow1⋮a\)
\(\Rightarrow a=1\)
Hay \(ƯCLN\left(2n+5,n+3\right)=1\text{ }\)
Vậy chứng tỏ \(\frac{2n+5}{n+3}\) là phân số tối giản.
Gọi ƯCLN \(\left(2n+5.n+3\right)\)là \(d\left(d>1\right)\)
Ta có : \(\hept{\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}}\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\le1\)
Mà \(d\ge1\Rightarrow d=1\)
Vậy phân số tối giản