Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A= -1+7+(-72)+73+(-74)+....+72008 +72008
A.7=[-7+72+(-73)+74+....+72009 +72009] + [ -1+7+(-72)+73+(-74)+....+72008 +72008]
A.7=[72009.2+(-1) +72008] :7
b;c làm tương tự
\(M=7^1+7^2+7^3+7^4+7^5+7^6\)
\(\Rightarrow M=\left(7^1+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)
\(\Rightarrow M=7.\left(1+7\right)+7^3.\left(1+7\right)+7^5.\left(1+7\right)\)
\(\Rightarrow M=7.8+7^3.8+7^5.8\)
\(\Rightarrow M=8.\left(7+7^3+7^5\right)⋮8\left(ĐPCM\right)\)
=7(7^0+7^1+7^2+7^3+7^4+7^5)
=7*19608
mà 19608 chia hết cho 8
Suy ra: 7*19608chia hết cho 8
Suy ra: 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8
Đặt A=1+7+72+...+7101
=(1+7)+(72+73)+...+(7100+7101)
=8+72(1+7)+...+7100(1+7)
=8+72.8+...+7100.8
=8(1+72+...+7100)
\(\Rightarrow A⋮8\)
Vậy A\(⋮\)8
Ta có : A = ( 1 + 7 ) + ( 7^2 +7^3 ) + .... + ( 7^100 + 7^101 )
= 1( 1 + 7 ) + 7^2( 1+7 ) +.....+ 7^100( 1 + 7 )
= 1. 8 + 7^2 . 8 +....+ 7^100 . 8
= 8( 1+7^2+....+7^100 )
=> A chia hết cho 8
E=1+7+72+73+...+72008+72009
E=(1+7)+(72+73)+..+(72008+72009)
E=1.(1+7)+72.(1+7)+...+72008.(1+7)
E=1.8+72.8+...+72008.8
E=8.(1+72+...+72008) chia hết cho 8
E=(1+7)+(72+73)+...+(72008+72009)
E=8+72(1+7)+...+72008(1+7)
E=8+72.8+...+72008.8
E=8(1+72+...+72008) chia hết cho 8
=>E chia hết cho 8