K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

A = \(3^1+3^2+3^3+...+3^{60}\)

A = 3 ( 1 + 3 ) + \(3^3\left(1+3\right)\)+  ..... + \(3^{59}\left(1+3\right)\)

A = 3 . 4 + \(3^3.4\) +   ..... + \(3^{59}.4\)

A = 4 ( \(3+3^3+....+3^{59}\)) chia hết cho 4 

Vậy A = \(3^1+3^2+3^3+...+3^{60}\)chia hết cho 4

10 tháng 11 2018

Thăm Tuy Thăm Tuy làm đúng r mà

k bn ấy nha

5 tháng 10 2017

help me !!!!!!!!!!!!!!!

5 tháng 10 2017

a) A= (2+22)+(23+24)+........(259+260)

= 1(2+22) + 22(2+22) + ....... 258(2+22)

= 1.6 + 22.6 +......... 258.6

=6(1+22+.......258)

Vì 6 chia hết cho 3 nên => 6(1+22+........258)

Các câu còn lại cũng tương tự như vậy nha bn!

9 tháng 12 2021

\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)

\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)

9 tháng 12 2021

\(a,S=3+3^2+3^3+...+3^{20}\)

Ta thấy:\(3+3^2=12⋮12\)

\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)

\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)

\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)

6 tháng 10 2016

\(A=1+3+3^2+3^3+...+3^{1999}+3^{2000}\)

\(A=3^0+3^1+3^2+3^3+...+3^{1999}+3^{2000}\)

Xét dãy số : 0 ; 1 ; 2 ; 3 ; ... ; 1999 ; 2000

Số số hạng của dãy số trên là :

    ( 2000 - 0 ) : 1 + 1 = 2001 ( số )

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\) ( 667 cặp số )

\(A=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{1998}.\left(1+3+3^2\right)\)

\(A=1.13+3^3.13+...+3^{1998}.13\)

\(A=\left(1+3^3+...+3^{1998}\right).13\)

=> A chia hết cho 13

28 tháng 7 2016

\(A=1+3+3^2+3^3+....+3^{11}\)

\(=\left(1+3+3^2\right)\left(3^3+3^4+3^5\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)

\(=13.1+3^3.13+...+3^9.13\)

\(=13.\left(1+3^3+3^6+3^9\right)\)

Vì có cơ số là 13 => A chia hết cho 13

b) \(A=1+3+3^2+3^3+....+3^{11}\)

\(=40.1+40.3^4+40.3^8\)

\(=40.\left(1+3^4+3^8\right)\)

Vì có cơ số 40 nên A chia hết 40 

28 tháng 7 2016

Ta có

\(\left(+\right)A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.....+3^9\left(1+3+3^2\right)=13\left(1+3^3+...+3^9\right)\)(chia hết cho 13)

\(\left(+\right)A=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)=40\left(1+3^4+3^8\right)\) chia hết cho 40

1 tháng 11 2015

A=(21+22+23)+(24+25+26)+...+(258+259+260)

A=21(1+2+22)+24(1+2+22)+...+258(1+2+22)

A=2.7+24.7+...+258.7

A=7(2+24+...+258) chia hết cho 7

Vậy A = 2^1 + 2^2 + 2^3 + ... + 2^60 chia hết cho 7

tick mk nha

1 tháng 11 2015

                                                                 Giải :

Có : A = 21 + 22 + 2+ ........+ 260

Ta thấy A có số số hạng là : ( 60 - 1 ) :1 + 1 =60 ( số hạng )

Vì 60 chia hết cho 3 nên nhóm 3 số vào 1 nhóm ta được :

A= ( 21 + 22 + 2 ) + (24 + 25  + 2) + .........+( 258 +259 + 260 )

A = 21 ( 1 + 2 + 22 ) + 24 ( 1+ 2 +2) + ..........+ 258 ( 1 + 2 + 22 )

A = 21 ( 1 + 2 + 4 ) + 24 ( 1 + 2 + 4 ) +............+ 258 ( 1 + 2 + 4 )

A = 21 . 7 + 24 . 7 +.........+ 258 . 7 

A = ( 21 + 24 + ........+ 258 ) . 7

Vì 7 chia hết cho 7 nên ( 21 + 24 + .........+ 258​ ) . 7 chia hết cho 7

Suy ra A chia hết cho 7 

Vậy A chia hết cho 7