Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,19^{2018}+13^{2018}\)
\(19\equiv-1\left(mod10\right)\)
\(\Rightarrow19\equiv\left(-1\right)^{2018}=1\left(mod10\right)\)
\(13^{2018}=\left(13^2\right)^{1009}=169^{1009}\)
\(169\equiv-1\left(mod10\right)\)
\(\Rightarrow169^{1009}\equiv\left(-1\right)^{1009}=-1\left(mod10\right)\)
\(\Rightarrow19^{2018}+13^{2018}\equiv1+\left(-1\right)=0\left(mod10\right)\)
\(\Leftrightarrow19^{2018}+13^{2018}⋮10\left(đpcm\right).\)
\(b,17^{2013}+23^{2017}\)
\(17^{2013}=\left(17^2\right)^{1006}.17=289^{1006}.17\)
\(289\equiv-1\left(mod10\right)\)
\(\Rightarrow289^{1006}\equiv\left(-1\right)^{1006}=1\left(mod10\right)\)
\(17\equiv7\left(mod10\right)\)
\(\Rightarrow289^{1006}.17\equiv1.7=7\left(mod10\right)\)( 1 )
\(23^{2017}=\left(23^2\right)^{1008}.23=529^{1008}.23\)
\(529\equiv-1\left(mod10\right)\)
\(\Rightarrow529^{1008}\equiv\left(-1\right)^{2018}=1\left(mod10\right)\)
\(23\equiv3\left(mod10\right)\)
\(\Rightarrow529^{1008}.23\equiv1.3=3\left(mod10\right)\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow17^{2013}+23^{2017}\equiv7+3=10\left(mod10\right)\)
Mà \(10⋮10\Rightarrow17^{2013}+23^{2017}\equiv0\left(mod10\right)\)
\(\Leftrightarrow17^{2013}+23^{2017}⋮10\left(đpcm\right).\)
\(c,17^5+24^4-13^{21}\)
\(=\overline{...7}+\overline{...6}-\overline{...3}\)
\(=\overline{...0}⋮10\)
\(\Rightarrow17^5+24^4-13^{21}⋮10\left(đpcm\right).\)
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
\(e)\) \(81^7-27^9-9^{13}\)
\(=\)\(\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=\)\(3^{28}-3^{27}-3^{26}\)
\(=\)\(3^{24}\left(3^4-3^3-3^2\right)\)
\(=\)\(3^{24}\left(81-27-9\right)\)
\(=\)\(3^{24}.45⋮45\)
Vậy \(81^7-27^9-9^{13}⋮45\)
\(g)\) \(10^9+10^8+10^7\)
\(=\)\(10^6\left(10^3+10^2+10\right)\)
\(=\)\(10^6\left(1000+100+10\right)\)
\(=\)\(10^6.1110\)
\(=10^6.2.555⋮555\)
Vậy \(10^9+10^8+10^7⋮555\)
Chúc bạn học tốt ~
a) ta có : \(\overline{ab}\)+\(\overline{ba}\) = (10a+b)+(10b+a)= 11a+11b \(⋮\)11
b) tương tự
a) 102k - 1 = 102k -10k + 10k -1 = 10k ( 10k -1 ) + ( 10k -1 ) Chia hết cho 19
b) 103k -1 = 103k - 10k + 10k -1 =10k ( 102k -1 ) + ( 10k -1 ) Chia hết cho 19
a) Vì \(10^k-1⋮19\Rightarrow10^k-1=19n\left(n\inℕ\right)\)
\(\Rightarrow10^k=19n+1\)
\(\Rightarrow10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=361n^2+38n+1\)
\(\Rightarrow10^{2k}-1=361n^2+38n+1-1=361n^2+38n⋮19\)
Vậy.................
b) Ý này bạn làm giống vậy nha
a, \(12^{1980}-2^{1600}\)
\(=\left(2^4\right)^{495}-\left(2^4\right)^{400}\)
\(=16^{495}-16^{400}\)
\(=\overline{...6}-\overline{...6}\)
\(=\overline{...0}⋮10\left(đpcm\right)\)
b, \(19^{2005}+11^{2006}\)
\(=19\cdot19^{2004}+\overline{...1}\)
\(=19\cdot\left(19^2\right)^{1002}+\overline{...1}\)
\(=19\cdot361^{1002}+\overline{...1}\)
\(=19\cdot\overline{...1}+\overline{...1}\)
\(=\overline{...9}+\overline{...1}\)
\(=\overline{...0}⋮10\left(đpcm\right)\)
a) Ta có :
32006 + 32005 - 32004
= 32004 . ( 32 + 3 - 1 )
= 32004 . ( 9 + 3 -1 )
= 32004 . 11 ⋮ 11
b) Ta có ;
20061000 + 2006999
= 2006999 . ( 2006 + 1 )
= 2006999 . 2007 ⋮ 2007
a) 321 - 319 = 319 . 32 - 319
= 319 . ( 32 - 1 )
= 319 . ( 9 - 1 )
= 319 . 8 chia hết cho 8
b) 321 + 319 = 319 . 32 + 319
= 319 . ( 32 + 1 )
= 319 . ( 9 + 1 )
= 319 . 10 chia hết cho 10
Nhớ tích nha bạn