
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\left(x+\frac{2}{3}\right)^3=\frac{1}{8}\)
\(\Rightarrow x+\frac{2}{3}=\frac{1}{2}\)
\(x=\frac{1}{2}-\frac{2}{3}\)
\(x=\frac{-1}{6}\)
b) 52x-1-125 = 0
52x-1 = 0+125
52x-1 = 125
<=> 52x-1 = 53
=> 2x-1=3
=> x = 2
c) \(\frac{8^1}{3^{2x+1}}=3\)
\(\Rightarrow8=3.3^{2x+1}=3^{2x+1+1}=3^{2x+2}\)
\(\Rightarrow8\ne3^{2x+2}\)
=> x vô nghiệm
a, \(\left(\frac{x+2}{3}\right)^3=\frac{1}{8}\)\(\Rightarrow\left(\frac{x+2}{3}\right)^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow\frac{x+2}{3}=\frac{1}{2}\)\(\Rightarrow\left(x+2\right).2=3.1\)\(\Rightarrow x+2=\frac{3}{2}\)\(\Rightarrow x=-\frac{1}{2}\)

_Minh ngụy_
a) ( 1000-13) . ( 1000-23) . ( 1000-33) ...( 1000 -503)
\(=\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-10^3\right)\cdot.....\cdot\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\cdot\left(100-2^3\right)\cdot...\cdot\left(1000-1000\right)\cdot...\cdot\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot......\cdot0\cdot......\left(1000-50^3\right)\)
\(=0\)
b) (1/125-1/13) . (1/125-1/23).( 1/125-1/33)...( 1/125-1/253)
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{5^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{125}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot....\cdot0\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=0\)

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
= \(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)
= \(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}< 1\)
=) \(A< 1\) (ĐPCM)

b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha


\(Q=2^3+4^3+...+20^3\)
\(Q=1^3.2^3+2^3.2^3+3^3.2^3+...+10^3.2^3\)
\(Q=\left(1^3+2^3+3^3+...+10^3\right).2^3\)
\(Q=3025.8\)
\(Q=24224\)

\(A=\left(x-2\right)^2\ge0\forall x\)
Dấu '=' xảy ra khi x=2
\(B=\left(2x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=1/2
\(D=\left(x^2-9\right)^4+\left|y-2\right|-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x^2-9=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;2\right);\left(3;2\right)\right\}\)
\(\dfrac{10^3}{2^3}=5^3=125\)