Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{22}\left(3^6-3^5-3^4\right)\)
\(=3^{22}\times405\)
\(\Rightarrow81^7-27^9-9^{13}⋮405\)(vì có chứa thừa số 405)
b) Ta có: \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{17}\left(2^4-2\right)=2^{17}\times14\)
\(\Rightarrow8^7-2^{18}⋮14\)(vì có chứa thừa số 14)
a, \(10^9+10^8+10^7⋮222\)
Ta có:\(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)\)
\(=10^7.111=5^7.2^7.111=5^7.2^6.2.111=5^7.2^6.222\)
Vì 222\(⋮222\Rightarrow5^7.2^6.222⋮222\)
Vậy \(10^9+10^8+10^7⋮222\)
b) 817 - 279 - 913 ⋮ 45
\(\)Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{26}.\left(3^2-3-1\right)\)
\(=3^{26}.5=3^{24}.3^2.5=3^{24}.45\)
Vì \(45⋮45\Rightarrow3^{24}.45⋮45\)
Vậy \(81^7-27^9-9^{13}⋮45\)
CHÚC BẠN HỌC TỐT!!
\(81^7-27^9-9^{13}=3^{4.7}-3^{3.9}-3^{2.13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.81.5=405.3^{22}\)
Chia hết cho 405 => ĐPCM
\(81^7=3^{28};27^9=3^{27};9^{13}=3^{26}\)
=\(3^{28}-3^{27}-3^{26}=3^{26}-\left(3^2-3-1\right)\)
=\(3^{26}.5=3^{13}.3^2.5=3^{13}.45⋮45\)
Mà 405=45.9
\(\Rightarrow\)dpcm
Ta có x+3=(x-1)+4
Nên 4\(\inƯ\left(x-1\right)=\left\{\pm1,\pm2,\pm4\right\}\)
x-1=1 \(\Rightarrow\) x=2 x-1=-2\(\Rightarrow\)x=-1
x-1=-1 \(\Rightarrow\) x=0 x-1=4\(\Rightarrow\)x=5
x-1=2\(\Rightarrow\)x=3 x-1=-4 \(\Rightarrow\) x=-3
\(\Rightarrow\) x\(\in\left\{2,-1,0,5,3,-3\right\}\)
a: \(81^7-27^9-9^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5\)
\(=3^{22}\cdot3^4\cdot5=3^{22}\cdot405⋮405\)
b: Để A<0 thì \(\dfrac{x+3}{x-1}< 0\)
=>-3<x<1
Bài 1:
\(A=\frac{24.47-22}{24+47.23}.\frac{5+\frac{5}{7}+\frac{5}{11}-\frac{5}{13}+\frac{5}{1001}}{6+\frac{6}{7}+\frac{6}{11}-\frac{6}{13}+\frac{6}{1001}}\)\(=\frac{47.23+47-22}{24.47.23}.\frac{5\left(1+\frac{1}{7}+\frac{1}{11.}-\frac{1}{13}+\frac{1}{1001}\right)}{6\left(1+\frac{1}{7}+\frac{1}{11}-\frac{1}{13}+\frac{1}{1001}\right)}\)
\(=\frac{47.23+24}{24+47.23}.\frac{5}{6}\)
\(=1.\frac{5}{6}=\frac{5}{6}\)
Bài 2:
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)\)
\(=3^{22}.405\) chia hết cho 405
=>đpcm
=(3^4)^7-(3^3)^9-(3^2)^13
=3^28-3^27-3^26
=3^26.3^2-3^26.3-3^26.1
=3^26.(3^2-3-1)=3^26.5=3^22.3^4.5=3^22.405
Vậy 81^7-27^9-9^13 luôn chia hết cho 405
a, \(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{25}.3.5\)
\(=3^{25}.15⋮15\)
\(\Leftrightarrow81^7-27^9-9^{13}⋮15\Leftrightarrowđpcm\)
81^7-27^9-9^13
=(3^4)^7-(3^3)^9-(3^2)^13
=3^28-3^27-3^26
=(3^26.3^2)-(3^26.3^1)-(3^26.1)
=3^26.(9-3-1)
=3^22.(3^4.5)
=3^22.405 chia het cho 405
=> 81^7-27^9-9^13 chia het cho 405
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{36}=3^{22}.\left(3^6-3^5-3^4\right)\)
\(=3^{22}.405⋮405\)