Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}< 2\left(đpcm\right)\)

\(a)\) Ta có :
\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)
\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)
Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)
Do đó :
\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
Ta có :\(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}< 1\)
Nên : \(B< A< 1\left(đpcm\right)\)

\(a)\) Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow\)\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\)\(A< 1+1-\frac{1}{100}\)
\(\Rightarrow\)\(A< 2-\frac{1}{100}< 2\)
\(\Rightarrow\)\(A< 2\) ( đpcm )
Vậy \(A< 2\)
Chúc bạn học tốt ~
Ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\) ; \(\frac{1}{3^2}<\frac{1}{2.3}\); ... ; \(\frac{1}{100^2}<\frac{1}{99.100}\) (chung tử, mẫu nào lớn hơn thì bé hơn)
Cộng vế theo vế ta được: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)***
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)( -1/2 +1/2= 0 ; ...; -1/99+1/99=0)
\(=1-\frac{1}{100}<1\)
Do đó : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}<1\)
Vậy y <1
***Chú ý: \(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{1.2}-\frac{1}{1.2}=1-\frac{1}{2}\).... các phân số khác làm tương tự như: \(\frac{1}{99.100}=\frac{100-99}{99.100}=\frac{100}{99.100}-\frac{99}{99.100}=\frac{1}{99}-\frac{1}{100}\)***
1/345