Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(A=x^2+6x+10=\left(x+3\right)^2+1\)
\(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+1\ge1\)
\(\Rightarrow A\ge1\)
\(\Rightarrow A>0\)
Ta có: \(-x^2+3x-5=-\left(x^2-3x+5\right)\)
\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{11}{4}\right)=-\left[\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\right]\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\)
\(\Rightarrow-\left[\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\right]\le-\frac{11}{4}\)
hay \(-x^2+3x-5\le\frac{-11}{4}\)
\(\Rightarrow-x^2+3x-5< 0\)( đpcm )
\(-x^2+3x-5=\left(-x^2+3x-\frac{9}{4}\right)-\frac{11}{4}\)
\(=-\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
=> Đpcm
a)
Đặt \(A=9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x+1+1\)
\(=\left(3x+1\right)^2+1\)
Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)
Hay \(A\ge1>0;\forall x\)
Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức
\(a,9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x.1+1^2+1\)
\(=\left(3x-1\right)^2+1\)
Vì\(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)
\(\Rightarrow9x^2-6x+2>0\forall x\)
\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
\(\Rightarrow x^2+x+1>0\forall x\)
2x2+2y2=5xy
<=>2x2-5xy+2y2=0
<=>(2x2-4xy)-(xy-2y2)=0
<=>2x(x-2y)-y(x-2y)=0
<=>(x-2y).(2x-y)=0
<=> (x-2y)=0 hoặc 2x-y=0
Nếu x-2y=0 =>x=2y
=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3
Nếu 2x-y=0 =>2x=y
=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3
2x^2 + 2y^2 = 5xy
<=> 2x^2 + 2y^2 - 5xy = 0
<=> 2x^2 - 4xy + 2y^2 - xy = 0
<=> 2x(x - 2y) - y(x - 2y) = 0
<=> (2x - y)(x - 2y) = 0
<=> 2x = y hoặc x = 2y
thay vào là xong
a) 2x2 - 4x + 5
= 2( x2 - 2x + 1 ) + 3
= 2( x - 1 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 3x2 + 2x + 1
= 3( x2 + 2/3x + 1/9 ) + 2/3
= 3( x + 1/3 )2 + 2/3 ≥ 2/3 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 10
= -x2 + 6x - 9 - 1
= -( x2 - 6x + 9 ) - 1
= -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
d) -x2 + 3x - 3
= -x2 + 3x - 9/4 - 3/4
= -( x2 - 3x + 9/4 ) - 3/4
= -( x - 3/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
e) \(\frac{x^2+4x+5}{2}>0\)
Vì 2 > 0
=> x2 + 4x + 5 > 0
=> x2 + 4x + 4 + 1 > 0
=> ( x + 2 )2 + 1 > 0 ( đúng )
=> \(\frac{x^2+4x+5}{2}>0\)∀ x ( đpcm )
f) \(\frac{-6+2x-x^2}{x^2+1}< 0\)
Vì x2 + 1 ≥ 1 ∀ x
=> -6 + 2x - x2 < 0
=> -x2 + 2x - 1 - 5
= -( x2 - 2x + 1 ) - 5
= -( x - 1 )2 - 5 < 0 ( đúng )
=> \(\frac{-6+2x-x^2}{x^2+1}< 0\)∀ x ( đpcm )
a,Ta có :\(2x^2-4x+5=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+3\)
\(=\left(x-1\right)^2+\left(x-1\right)^2+3=2\left(x-1\right)^2+3\)
Do \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+3\ge3\forall x\inℝ\)
Hay :\(2x^2-4x+5>0\)
Vậy nên BPT luôn đúng với mọi số thực x
b,Ta có : \(3x^2+2x+1=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
Do \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\inℝ\\2x^2\ge0\forall x\inℝ\end{cases}}\Leftrightarrow\left(x+1\right)^2+2x^2\ge0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
c,Ta có : \(-x^2+6x-10=-\left(x^2-6x+10\right)\)
\(=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)
Do \(\left(x-3\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-3\right)^2-1\le-1\forall x\inℝ\)
Hay \(-x^2+6x-10\le-1\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
d, Ta có :\(-x^2+3x-3=-\left(x^2-3x+3\right)\)
\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{3}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\)
Do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\forall x\inℝ\)
Hay \(-x^2+3x-3\le0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
2 câu còn lại bạn nào làm giúp mình nha
Câu b:
Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)
\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)
\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)
Mà \((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)
\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)
\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)
Đặt A= x2 + 6x + 10
=> A= x2 + 2.3x + 32 +1
A = (x+3)2 +1 ≥ 1
=> A > 0 với mọi x (đpcm)
Bài 1:
a) \(x^3-5x^2+8x-4\)
\(=x^3-4x^2+4x-x^2+4x-4\) \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)
b) Ta có: \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Với \(x\in Z\)thì \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)
Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.
Bài 1:
a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4
=x(x2-4x-4)-(x2-4x+4)
=(x-1) (x-2)2
b)Xét:
\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)
=\(5x+4+\frac{7}{2x-3}\)
Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc Z => 7 /\ (2x-3)
Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B
c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)
=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)
=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)
=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)
=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)
=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)
=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh
Bài 2 )
a)(x2+x)2+4(x2+x)=12 đặt y=x2+x
y2+4y-12=0 <=>y2+6y-2y-12=0
<=>(y+6)(y-2)=0 <=> y=-6;y=2
>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x
>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0
<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=> x=-2;x-1
Vậy nghiệm của phương trình x=-2;x=1
b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)
=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
Nhờ OLM xét giùm em vs ạ !
x2 - 6x + 10
= x2 - 2.x.3 + 32 + 1
= ( x - 3 )2 + 1
Vì \(\left(x-3\right)^2\ge0\forall x\)
1 > 0
=> \(\left(x-3\right)^2+1\ge0\forall x\) ( đpcm )
Study well
Ta có: x2 – 6x + 10 = x2 – 2.x.3 + 9 + 1 = (x – 3)2 + 1
Vì (x – 3)2 ≥ 0 với mọi x nên (x – 3)2 + 1 > 0 mọi x
Vậy x2 – 6x + 10 > 0 với mọi x.