Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$S=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{17}+2^{18}+2^{19}+2^{20})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{17})$
$=15(2+2^5+....+2^{17})\vdots 15\vdots 5$
A = 22 + 24 + 26 + 28 + ... + 218 + 220
A = ( 22 + 24 ) + ( 26 + 28 ) + ... + ( 218 + 220 )
A = 20 + ( 26 . 1 + 26 . 22 ) + ... + ( 218 . 1 + 218 . 22 )
A = 20 + 24 ( 22 + 24 ) + ... + 216 ( 22 + 24 )
A = 20 . ( 24 + ... + 216 ) \(⋮\)5
Vậy A \(⋮\)5
Học tốt!!!
Phân tích :
20 = 2 . 10
Tận cùng dãy trên có tận cùng là 0 nên chia hết cho 10
Vì tổng trên toàn các số chia hết cho 2 nên tổng chia hết cho 2 .
Chia hết cho cả 2 và 10 đồng nghĩa với việc số đó chia hết cho 20
10^9 + 2 = 100....0 + 2 = 100...02.
Tổng các chữ số của số trên là:
1 + 0 + ... + 0 + 2 = 3.
Vậy số trên chia hết cho 3 vì có tổng các chữ số chia hết cho 3 => 10^9 + 2 chia hết cho 3 (đpcm)
Bài kia làm tương tự
2) a) 102001 có tổng các chữ số bằng 1 => 102001 có tổng các chữ số bằng 3 => số đó chia hết cho 3; không chia hết cho 9
b) 102001 - 1 = 100....00 - 1 = 999..9 (có 2001 chữ số 9) => tổng các chữ số của nó chia hết cho 9
=> 102001 -1 chia hết cho 9 và chia hết cho 3
2) Gọi 5 số tự nhiên liên tiếp là n; n + 1; n + 2; n + 3; n + 4 ( n thuộc N)
n là số tự nhiên nên n có thể có dạng 5k; 5k + 1; 5k + 2; 5k + 3; 5k + 4
+) Nếu n = 5k : tức là n chia hết cho 5
+) Nếu n = 5k + 1 => n + 4 = 5k + 5 = 5.(k+1) chia hết cho 5 => n+ 4 chia hết cho 5
+) Nếu n = 5k + 2 => n + 3 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 3 chia hết cho 5
+) Nếu n = 5k + 3 => n + 2 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 2 chia hết cho 5
+) n = 5k + 4 => n +1 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 1 chia hết cho 5
Vậy Trong năm số tự nhiên liên tiếp luôn có 1 số tự nhiên chia hết cho 5
Gọi tổng trên là A
A=2+22+23+....+220
A=(2+23)+(24+22)+....+(218+220)
A=(..0)+(..0)+.....(....0)
A=(..0)
Từ đó suy ra tổng trên chia hết cho10