Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(A=2^{100}-2\)
\(B=2^{101}\) là số chẵn và B hơn A 2 đơn vị
=> A và B là 2 số tự nhiên chắn liên tiếp
2A=2^2+2^3+...+2^101
2A-A=(2^2+2^3+...+2^101)-(2+2^2+...+2^100)
A=2^101-2
=>A và B là 2 STN liên tiếp => đpcm
k cho mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1)Ta có:
\(111...11222...22\left(100 cs 1 v\text{à} 2\right)=10^{100}.111...111\left(100 cs 1\right)+222...22\left(100 cs 2\right)\)
\(=10^{100}.\frac{10^{100}-1}{9}+2.\frac{10^{100}-1}{9}=\frac{10^{100}\left(10^{100}-1\right)+2\left(10^{100}-1\right)}{9}=\frac{\left(10^{100}+2\right)\left(10^{100}-1\right)}{9}=\frac{10^{100}+2}{3}.\frac{10^{100}-1}{3}\)
\(M\text{à} \frac{10^{100}+2}{3}\ne\frac{10^{100}-1}{3} \)
\(\Rightarrow111...11222..2\left(100 cs 1 v\text{à} 2\right) \) không phải là tích 2 số tự nhiên
2) Để dacb chia hết cho 4 thì cb chia hết cho 4
Ta có :
cb=10c+b=8c+2c+b
Mà 8c chia hết cho 4 nên
2c+b cũng phải chia hết cho 4(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2/ Ta chú ý cái này:
\(10^{100}=999...999+1=9.111...111+1\)
\(222...222=2.111...111\)
Ta đặt \(111...111=n\)
\(\Rightarrow111...111222...222=111...111.10^{100}+222...222\)
\(=111...111.\left(9.111...111+1\right)+2.111...111\)
\(=n\left(9n+1\right)+2n=9n^2+3n=3n\left(3n+1\right)\)
Vậy \(111...111222...222\)là tích của 2 số tự nhiên liến tiếp
1/ Ta có: \(p^2-1=\left(p-1\right)\left(p+1\right)\)
Vì p là số nguyên tố lớn hơn 3 nên
\(\left(p-1\right)\left(p+1\right)\) là tích của 2 số chẵn liên tiếp
\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮8\left(1\right)\)
Vì p nguyên tố lớn hơn 3 nên p có 2 dạng là: \(\orbr{\begin{cases}3k+1\\3k+2\end{cases}}\)
Với \(p=3k+1\)
\(\Rightarrow p^2-1=\left(3k+1\right)^2-1=9k^2+6k=3k\left(3k+2\right)⋮3\)
Với \(p=3k+1\)
\(\Rightarrow p^2-1=\left(3k+2\right)^2-1=9k^2+12k+3=3\left(3k^2+4k+1\right)⋮3\)
\(\Rightarrow p^2-1⋮3\left(2\right)\)
Vì 3 và 8 nguyên tố cùng nhau nên từ (1) và (2)
\(\Rightarrow p^2-1⋮\left(3.8=24\right)\)