K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

13 tháng 12 2015

Ta có: \(S=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)\)

\(=3.\left(1+3\right)+3^3.\left(1+3\right)+3^5.\left(1+3\right)\)

\(=3.4+3^3.4+3^5.4\)

\(=4.\left(3+3^3+3^5\right)\) chia hết cho 4

=> S chia hết cho 4 (đpcm).

13 tháng 12 2015

Ghép 2 số lại     

12 tháng 10 2015

a) Gọi tổng là A. Ta có :

A = ( 21 + 22 ) + ( 23 + 24 ) + ... + ( 299 +2100 )

A = 21 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 299 ( 1 + 2 )

A = 3 . ( 21 + 23 + ... + 299 )

\(\Rightarrow\)A chia hết cho 3 ( đpcm )

b) Gọi tổng là B. Ta có :

B = ( 31 + 32 + 33 ) + ... + ( 31996 + 31997 + 31998 )

B = 31 ( 1 + 2 + 10 ) + ... + 31996 ( 1 + 2 + 10 )

B = 13 . ( 31 + ... + 31996 )

\(\Rightarrow\)B chia hết cho 13 ( đpcm )

 

 

24 tháng 8 2017

  Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và  a2b2 = 2.(-5) =(-1).10 =c2d2

P(x) = (9x2 – 9x – 10)(9x2  + 9x – 10) + 24x2

Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:

          Q(y) = y(y + 10x) = 24x2

          Tìm  m.n = 24x2 và  m + n = 10x ta chọn được  m = 6x , n = 4x

Ta được: Q(y) = y2 + 10xy + 24x2

                                = (y + 6x)(y + 4x)

Do đó:     P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).

8 tháng 12 2018

Ta có ;

S = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 

    = ( 1 + 2 ) + ( 2 + 2 3 ) + ( 2 + 2 ) + ( 2 + 2 )

    = ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )

    = 3 + 2 2 .3 + 2 4 .3 + 2 6 .3

    = 3 . ( 1 + 2 2 + 2 4 + 2 6 )  chia hết cho 3  (  Vì 3 chia hết cho 3 )

 A = 3 + 3 + 3 + ..... + 3 + 3 10

    = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )

    = 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )

    = 3 . 4 + 3 3 . 4 + .... + 3 9 . 4

    = 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )

8 tháng 12 2018

\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)

\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)

30 tháng 12 2015

S = 3 + 32 + 33 + 34 + 35 + 36

   = (3 + 32) + (33 + 34) + (35 + 36)

   = 3(1+ 3) + 33(1 + 3) + 35(1 + 3)

   = 3 . 4 + 33 . 4 + 35 . 4

   = (3 + 33 + 35) . 4

Vì 4 chia hết cho 4 => (3 + 33 + 35) . 4 chia hết cho 4

Vậy S chia hết cho 4

5 tháng 5 2016

a, Vì 3 khong chia het cho 9

Các hạng tử còn lại đều chia hết cho 9

Nên S không chia hết cho 

b, Tính được số số hạng của tông S là 1008 số hạng

S=(3+3^3+3^5)+(3^7+3^9+3^11)+...+(3^2011+3^2013+3^2015)

S=3.91+3^7.91+...+3^2011.1 chia het cho 9

Kết luận : S chia het cho 7

S=(3+3^3)+(3^5+3^7)+...+(3^2013+3^2015)

S=3.10+3^5.10+...+3^2013.10 chia hết cho 10

Kết luận : S chia hết cho 10

Vì (10,7)=1 nên S chia het cho 70 

đúng nhé 

25 tháng 3 2018

Chứng tỏ S không chia hết cho 9:
Giải:
Ta thấy  3=3
             3= 32.3
             35 = 32.33
             37 = 32.35
                 ........
             32013 = 32.32011
             32015 = 32.32013
Phân tích ra theo dạng 32.n (vì 32 = 9)
Qua phần phân tích trên ta thấy các số 35, 37,..., 32013, 32015 đều chia hết cho 9 (tức là 32)
=> 35 + 37 +...+ 32013 + 32015 chia hết cho 9
Mà ta thấy 3 không chia hết cho 32 (không chia hết cho 9)
Nên 3 + 35 + 37 +...+ 32013 + 32015 không thể chia hết cho 9
Vậy S không chia hết cho 9


 

24 tháng 8 2017

a) (x-14):2=24-3

(x-14):2 = 13

x-14 = 13.2

x-14 = 26

x = 26 + 14

x = 40

b) x572 = x <=> x = 1 hoặc 0 

24 tháng 8 2017

a, b làm như trên nha, còn mấy bìa còn lại :

 M=1+2+22+...+211 

M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)

M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)

M = 63 + 26.63

M = 63 ( 1+ 26)

M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9

S=3 + 32 +33 +.....+ 39

S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)

S= 3. 13 + 3^4.13 + 3^7.13

S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13

M= 2+ 2+ 23+....+210 

M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3

=> M chia hết cho 3

A=  7+ 72 + 73 +.....+78 

A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)

A= 7. 400 + 7^5 . 400

A = 400( 7+7^5)

A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5