K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=10!+1.3.5..9

=9!.10+1.3.5...9

=5(9!.2+1.3.7.9) chia hết cho 5

=>đpcm

27 tháng 12 2015

a)

109 + 2

=100...0 + 2 (9 chữ số 0)

=100...02 (8 chữ số 0)

Có tổng các chữ số là:

1+0+0+...+0+2=3 nên chia hết cho 3

=>109 + 2 chia hết cho 3

b)

1010 -1

= 100...0 - 1 (10 chữ số 0)

=99...9 (10 chữ số 9)

Có tổng chữ số là:

9+9+9...+9=90 chia hết cho 9

=>1010 -1 chia hết cho 9

19 tháng 6 2016

105+35=100000+35=100035

Vì tổng các chữ số của 105+35 là: 1+0+0+0+3+5=9 chia hết cho 9 nên 105+35 chia hết cho 9 (1)

Vì 105+35 có tận cùng là 5 nên 105+35 chia hết cho 5 (2)

Từ (1) và (2) ta có điều phải chứng minh

b, 105+98=100000+98=100098

Vì 105+98 có tận cùng là 8 nên 105+98 chia hết cho 2 (1)

Vì tổng các chữ số của 105+98 là: 1+0+0+0+9+8=18 chia hết cho 9 nên 105+98 chia hết cho 9 (2)

Từ (1) và (2) ta có điều phải chứng minh

19 tháng 6 2016

a) 105 + 35 = 100000 + 35 = 100035 chia hết cho 9 và 5.

b) 105 + 98 = 100000 + 98 = 100098 chia hết cho 2 và 9.

15 tháng 10 2015

a, ĐPCM = 10^9+2 chia hết cho 3

b, ĐPCM = 10^10-1 chia hết cho 9

24 tháng 7 2015

1)

a)

=10...0+5

=10..05 chia hết cho 5

=1+0+5=6 chia hết cho3

b)10...0+44

=10...04 chia hết cho 2

=1+0+0+4+4=9 chia hết cho 9

 

23 tháng 12 2017

n là stn => n= 3k hoặc n=3k + 1 hoặc n= 3k + 2                         (k thuộc N)

với n=3k

​ ta có : 3k ( 3k + 1) (3k +5)

3k chia hết 3 => 3k ( 3k + 1) ( 3k + 5) chia hết cho 3

hay: n(n+1)(n+5) chia hết cho 3

với n=3k+1

ta có : (3k+1)(3k+1+1)(3k+1+5)

         =(3k+1)(3k+2)(3k+6)

         =3(3k+1)(3k+2)(k+2) chia hết cho 3

hay : n(n+1)(n+5) chia hết cho 3

với n= 3k+ 2

ta có : (3k+2)(3k+2+1)(3k+2+5)

         =(3k+2)(3k+3)(3k+7)

         =3(3k+2)(k+1)(3k+7) chia hết cho 3

hay : n(n+1)(n+5) chia hết cho 3

Vậy với mọi stn n thì n(n+1)(n+5) chia hết cho 3

10 tháng 5 2022

a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121