K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TV
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MK
1
AH
Akai Haruma
Giáo viên
22 tháng 2 2020
Lời giải:
Vì $x,x+1$ là 2 số nguyên liên tiếp nên $x,x+1$ khác tính chẵn lẻ. Do đó trong 2 số $x,x+1$ tồn tại 1 số chẵn, 1 số lẻ
$\Rightarrow x(x+1)\vdots 2(1)$
Mặt khác:
Nếu $x,y$ cùng tính chẵn lẻ thì $x+y$ chẵn
$\Rightarrow x+y\vdots 2\Rightarrow xy(x+y)\vdots 2$
Nếu $x,y$ khác tính chẵn lẻ thì tồn tại 1 số chẵn, 1 số lẻ
$\Rightarrow xy\vdots 2\Rightarrow xy(x+y)\vdots 2$
Vậy tóm lại $xy(x+y)\vdots 2(2)$
Từ $(1);(2)\Rightarrow x(x+1)-xy(x+y)\vdots 2$ (đpcm)
19 tháng 10 2015
Bài 2 :
Ta có : 9x + 5y và 17x + 17y chia hết cho 17
=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4.(2x+3y) chia hết cho 17
Mà (4;17) = 1 nên 2x + 3y chia hết cho 17
=> đpcm