Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Chứng tỏ rằng: ab + ba chia hết cho 11:
Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Vì \(11\left(a+b\right)⋮11\)
\(\Rightarrow ab+ba⋮11\)
Chứng tỏ rằng: ab - ba chia hết cho 9
Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)
vì \(9\left(a-b\right)⋮9\)
\(\Rightarrow ab-ba⋮9\)
1. a) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= 10a + b + 10b + a
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (ĐPCM)
b) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10a + b) - (10b + a)
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) \(⋮\)9
=> ab + ba \(⋮\)9 (ĐPCM)
2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) \(⋮\)3 (ĐPCM)
3)
Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1)
=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)
a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2
tổng của chúng là :
a + a + 1 + a + 2
= (a + a + a) + (1 + 2)
= 3a + 3
= 3(a + 1) ⋮ 3 (đpcm)
b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2
=> tích của chúng chia hết chô 2 (đpcm)
c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)
aaa = a.111 = a.3.37 ⋮ 37 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= (10a + a) + (10b + b)
= 11a + 11b
= 11(a + b) ⋮ 11 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= a ( 10 + 1) + b(10+1)
= a.11 + b.11
= ( a + b ).11 \(⋮\)11
Vậy ab + ba \(⋮\)11
Hok tốt
a, ab+ba=11a+11b=11(a+b)
=> đpcm
b, ab-ba=9a-9b=9(a-b)
=>đpcm
ghi thêm bước ptcts vào nhé
sáng tốt lành ^^
ta có: ab +ba=10a+b+10b+a=11a+11b=11.(a+b)
vì 11.(a+b) chia hết 11=>ab+ba chia hết 11
ab + ba= 10a + b + 10b + a
= (10 + 1)a + (1 + 10)b
= 11a + 11b = 11(a+b)
Do đó ab + ba chia hết cho 11
ab= 10*a + b
ba = 10*b + a
=> ab + ba = 11(a+b) chia hết cho 11
=. dpcm
Ta có
ab + ba =10a+b+10b+a
=(10a+a)+(10b+b)
=11a+11b=11(a+b)
=> ab + ba chia hết cho 11.
ta có:
ab+ba=(a.10+b)+(b.10+a)=a.11+b.11
vì 11chia hết cho 11 => (a+b).11 chia hết cho 11
=> ab+ba chia hết cho 11
k nha
ab=10a+b
ba=10b+a
=>ab+ba=10a+b+10b+a=11a+11b
=>ab+ba chia hết cho 11.
Ta có: ab + ba = 10a + b + 10b + a = 11(a + b) \(⋮\)11 (ĐPCM)
Ta có:
ab+ba =(a.10+b)+(b.10+a)=a.11+b.11=(a+b).11
Vì 11 chia hết cho 11=>(a+b).11chia hết cho 11
=>ab+ba chia hết cho 11
ta có ab+ba=10a+b+10b+a=11a+11b=11(a+b)
ta có 11(a+b) là h của 11 và a+b
=> 11(a+b) luôn chia hết cho 11
=> ab+ba chia hết cho 11
k nha
học tốt
ab + ba = 10 x a + b + 10 x b + a = a x (10+1) + b x (10+1) = a x 11 + b x 11 = 11 x (a+b)
=> ab + ba chia hết cho 11
ab + ba = 10a + b + 10b + a = 11a + 11b = 11( a + b) : hết cho 11
tick nha jang ha na
ab+ba = 10a+b+10b+a = 11a+11b=11(a+b) chia hết cho 11
=> dpcm