![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+4+4^2+...+4^{58}+4^{59}\)
\(A=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)
\(A=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)
\(A=5+4^2.5+...+4^{58}.5\)
\(A=5.\left(1+4^2+...+4^{58}\right)\)\(⋮\) \(5\)
Vậy \(A=1+4+4^2+...+4^{58}+4^{59}\) chia hết cho 5.
.
.
\(A=1+4+4^2+...+4^{58}+4^{59}\)
\(A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{56}+4^{57}+4^{58}\right)\)
\(A=21+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)
\(A=21+4^3.21+...+4^{57}.21\)
\(A=21.\left(1+4^3+...+4^{57}\right)\) \(⋮\) \(21\)
Vậy \(A=1+4+4^2+...+4^{58}+4^{59}\) chia hết cho 21.
( Số 21 là do tổng của \(\left(1+4+4^2\right)\)cộng thành nha )
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ chứng tỏ 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/101^2 < 100/101
Nhận xét : 1/2^2 = 1/2.2 < 1/1.2
1/3^2 = 1/3.3 < 1/2.3
.....
1/101^ 2 = 1/101 . 101 < 1/100 . 101
=> 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/101^2 < 1/1.2 + 1/2.3 + .... + 1/100 . 101
1/1.2 + 1/2.3 + .... + 1/100 . 101 = 1 - 1/2 +1/2 - 1/3 + .... + 1/100 - 1/101 = 1 - 1/101 = 100 / 101
=> 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/101^2 < 100/101
3/ x756y chia 2,5,9 đều dư 1
Để x756y chia 5 dư 1 => \(y\in\left\{1;6\right\}\)
Vì x756y chia 2 dư 1 => y lẻ => y = 1
=> x7561 chia 9 dư 1 \(\Leftrightarrow\)( x + 7 + 5 + 6 + 1 ) chia 9 dư 1 => x + 19 chia 9 dư 1 => x + 19 - 1 chia hết cho 9 => x + 18 chia hết cho 9 => x chia hết cho 9 => \(x\in\left\{0;9\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có : A = (3+3^3+3^3)+(3^4+3^5+3^6)+.....+(3^98+3^99+3^100)
= 3.(1+3+3^2)+3^4.(1+3+3^2)+.....+3^98.(1+3+3^2)
= 3.13+3^4.13+.....+3^98.13
= 13.(3+3^4+....+3^98) chia hết cho 13
=> ĐPCM
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Có : S = (1+2)+(2^2+2^3)+.....+(2^98+2^99)
= 3+2^2.(1+2)+......+2^98.(1+2)
= 3+2^2.3+.....+2^98.3
= 3.(1+2^2+......+2^98) chia hết cho 3
=> S chia hết cho 3
Có : 2S = 2+2^2+....+2^100
S = 2S - S = (2+2^2+....+2^100)-(1+2+2^2+....+2^99) = 2^100 - 1
=> S+1 = 2^100-1+1 = 2^100 = (2^2)^50 = 4^50 = 4^48+2
=> ĐPCM
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+3^7\right)=13\left(3+3^4+3^7\right)⋮13\) (đpcm)
Lời giải:
Ta có:
\(A=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9)\)
\(=(3.1+3.3+3.9)+(3^4.1+3^4.3+3^4.9)+(3^7.1+3^7.3+3^7.9)\)
\(=3.(1+3+9)+3^4\left(1+3+9\right)+3^7.\left(1+3+9\right)\)
\(=3.13+3^4.13+3^7.13\)
\(=13.(3+3^4+3^7)\) ⋮ 13 . Vậy: A ⋮ 13
Chúc bạn học tốt!
Tick cho mình nhé!
\(A=4+4^2+4^3+...+4^{102}\)
\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{100}\left(1+4+4^2\right)\)
\(=4\cdot21+4^4\cdot21+...+4^{100}\cdot21\)
\(=21\cdot\left(4+4^4+...+4^{100}\right)⋮21\left(dpcm\right)\)