Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;-2\right)\\\overrightarrow{AC}=\left(3;-\dfrac{9}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=-3.3+\left(-2\right).\left(-\dfrac{9}{2}\right)=0\)
\(\Rightarrow AB\perp AC\) hay tam giác ABC vuông tại A
\(AB=\sqrt{\left(-3\right)^2+\left(-2\right)^2}=\sqrt{13}\) ; \(AC=\sqrt{3^2+\left(-\dfrac{9}{2}\right)^2}=\dfrac{3\sqrt{13}}{2}\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{39}{4}\)
a: \(AB=\sqrt{\left(2-1\right)^2+\left(-1-1\right)^2}=\sqrt{5}\)
\(BC=\sqrt{\left(-2-2\right)^2+\left(-3+1\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(-2-1\right)^2+\left(-3-1\right)^2}=5\)
Đề sai rồi bạn
a,Vuông tại A mới đúng
\(AB=2\sqrt{10};AC=\sqrt{10};BC=5\sqrt{2}\)
\(\Rightarrow AB^2+AC^2=40+10=50=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
b, \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC.sinA=\dfrac{1}{2}.2\sqrt{10}.\sqrt{10}.sin90^o=10\)
c, \(D\left(0;y_0\right)\)
\(A;C;D\) thẳng hàng \(\Leftrightarrow\overrightarrow{AC}=k.\overrightarrow{AD}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=k\\-1=k\left(y_0-4\right)\end{matrix}\right.\Rightarrow y_0=\dfrac{11}{3}\)
\(\Rightarrow D\left(0;\dfrac{11}{3}\right)\)
a: vecto AB=(1;3)
vecto AC=(9;-3)
Vì vecto AB*vecto AC=1*9+3*(-3)=0
nên ΔABC vuông tại A
b: ABCD là hình chữ nhật
=>vecto AB=vecto DC
=>10-x=1 và -2-y=3
=>x=9 và y=-5
a) D nằm trên trục Ox nên tọa độ của D là (x; 0).
Ta có :
DA2 = (1 – x)2 + 32
DB2 = (4 – x)2 + 22
DA = DB => DA2 = DB2
<=> (1 – x)2 + 9 = (4 – x)2 + 4
<=> 6x = 10
=> x = => D(; 0)
b)
OA2 = 12 + 32 =10 => OA = √10
OB2 = 42 + 22 =20 => OA = √20
AB2 = (4 – 1)2 + (2 – 3)2 = 10 => AB = √10
Chu vi tam giác OAB: √10 + √10 + √20 = (2 + √2)√10.
c) Ta có = (1; 3)
= (3; -1)
1.3 + 3.(-1) = 0 => . = 0 => ⊥
SOAB = || .|| => SOAB =5 (dvdt)
\(\overrightarrow{AB}=\left(1;2\right)\)
\(\overrightarrow{AC}=\left(4;-2\right)\)
Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\)
nên ΔABC vuông tại A
\(AB=\sqrt{1^2+2^2}=\sqrt{5}\)
\(AC=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\)
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{10}{2}=5\left(đvdt\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(4;-2\right)\\\overrightarrow{AB}=\left(1;2\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{AC}.\overrightarrow{AB}=4.1+\left(-2\right).2=0\)
\(\Rightarrow AC\perp AB\) hay tam giác vuông tại A
\(AB=\sqrt{1^2+2^2}=\sqrt{5}\) ; \(AC=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=5\)