Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi ƯCLN(n + 1 ; 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản
b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d
\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản
Gọi \(d\inƯCLN\left(8n+5;6n+4\right)\)
\(\Rightarrow8n+5⋮d;6n+4⋮d\)
\(\Rightarrow3\left(8n+5\right)⋮d;4\left(6n+4\right)⋮d\)
\(\Rightarrow24n+15⋮d;24n+16⋮d\)
\(\Rightarrow\left(24n+16\right)-\left(24n+15\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{8n+5}{6n+4}\) tối giản (đpcm)
a)gọi d thộc ƯC ( 2n+5,3n+7)
=> 2n+5chia hết cho d 6n+15chia hết cho d
<=> <=> 6n+15-6n-14c/h cho d<=> 1 c/h cho d<=> d=1;-1
và 3n+7 chia hết cho d và 6n+14 c/h cho d
=>A là p số tối giản
b) làm tương tự a). ở đây, nhân 2n-5 lên 3 lần rồi lấy 6n-14-kết q vừa tìm đc thì ta đc d=1
a)gọi d là ƯCLN(2n+5;3n+7)
=>2n+5 chia hết cho d và 3n+7 chia hết cho d
=>(2n+5)-(3n+7) chia hết cho d
hay 3(2n+5)-2(3n+7) chia hết cho d
=>d=1
Vì ƯCLN=1. Nên phân số 2n+5/3n+7 là phân số tối giản
b) làm tương tự như câu a nhé bạn
Gọi d là UCLN(8n+5;6n+4)
=>*8n+5 chia hết cho d =>3.(8n+5) = 24n+15 chia hết cho d
*6n+4 chia hết cho d => 4.(6n+4)=24n+16 chia hết cho d
Suy ra: (24n+16)-(24n+15) chia hết cho d
=>24n+16-24b-15 chia hết cho d
=>1 chia hết cho d
=>d chỉ có thể là 1
=>điều phải chứng minh
Gọi d là ƯCLN(8n+5;6n+4)
ta có: 8n+5 chia hết cho d => 3.(8n+5) chia hết cho d => 24n+15 chia hết cho d(1)
6n+4 chia hết cho d => 4.(6n+4) chia hết cho d => 24n+16 chia hết cho d(2)
lấy (2)-(1)=>24n+16-(24n+15) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy ƯCLN(8n+5;6n+4) là 1 hay 8n+5/6n+4 là p/s tối giản