Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là Ư(4n+1;6n+1) (1)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}\)
\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)
\(\Rightarrow24n+6-24n-4⋮d\)
\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)
\(\Rightarrow0+2⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{-1;-2;1;2\right\}\) (2)
(1)(2) \(\Rightarrow\)\(ƯC\left(4n+1;6n+1\right)=\left\{-1;-2;1;2\right\}\)
mà \(4n⋮2;1⋮̸2\) \(\Rightarrow4n+1⋮̸2\)
\(\RightarrowƯC\left(4n+1;6n+1\right)=\left\{-1;1\right\}\)
vậy phân số \(\frac{4n+1}{6n+1}\) là p/s tối giản với mọi n thuộc N*
Gọi d là \(ƯCLN\left(n;n+1\right)\)
Khi đó:\(n⋮d;n+1⋮d\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(n;n+1\right)=1\)
\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản.
Gọi d là UCLN(8n+5;6n+4)
=>*8n+5 chia hết cho d =>3.(8n+5) = 24n+15 chia hết cho d
*6n+4 chia hết cho d => 4.(6n+4)=24n+16 chia hết cho d
Suy ra: (24n+16)-(24n+15) chia hết cho d
=>24n+16-24b-15 chia hết cho d
=>1 chia hết cho d
=>d chỉ có thể là 1
=>điều phải chứng minh
Gọi d là ƯCLN(8n+5;6n+4)
ta có: 8n+5 chia hết cho d => 3.(8n+5) chia hết cho d => 24n+15 chia hết cho d(1)
6n+4 chia hết cho d => 4.(6n+4) chia hết cho d => 24n+16 chia hết cho d(2)
lấy (2)-(1)=>24n+16-(24n+15) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy ƯCLN(8n+5;6n+4) là 1 hay 8n+5/6n+4 là p/s tối giản
a)Gọi ƯCLN(n + 1 ; 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản
b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d
\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản
Mk sẽ giải từng câu :)
Bài 1 :
Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)
\(\Rightarrow\)\(2⋮d\)
\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
1. Gọi d = ƯCLN (2n+2,6n+5)
=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d
Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d
=> 6n + 6 - 6n - 5 chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN (2n+2,6n+5) = 1
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản
2. Ta có:
B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{70}\))
B = 27/35
Vì \(\frac{27}{35}< 1\)
=> B < 1
3. x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)
x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)
x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)
x + \(\frac{8}{45}=\frac{-37}{45}\)
x = \(\frac{-37}{45}-\frac{8}{45}\)
x = -1
5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *
Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)
=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản
Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)
=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản