Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n+3\)và \(3n+4\)
Gọi d là ước chung lớn nhất của \(2n+3\)và \(3n+4\)
Ta có :
\(2n+3⋮d=\left(2n+3\right)\cdot3⋮d=\left(6n+9\right)⋮d\)
\(3n+4⋮d=\left(3n+4\right)\cdot2⋮d=\left(6n+8\right)⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\)Vậy \(2n+3\)và \(3n+4\)là hai số nguyên tố cùng nhau
Gọi ƯCLN ( 2n+3;3n+4 ) là d
\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3.\left(2n+3\right)⋮d\\2.\left(3n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}\)\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\text{Ư}\left(1\right)=\pm1\)
\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
đpcm
gọi UCLN(n+1;3n+4) là d
=>3n+4 chia hết cho d
=> n+1 chia hết cho d
=>3(n+1) chia hết cho d
=>3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1 và 3n+4 nguyên tố cùng nhau
n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1
Gọi ƯCLN(n+1;3n+4)=d
=> [(n+1)+(3n+4)] chia hết cho d
=> 1 chia hết cho d => d=1
=> ƯCLN(n+1;3n+4)=1
Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau
Gọi d là ước chung cua n+1 và 3n+4
Ta có n+1 :d và 3n +4:d
Suy ra (3n+4)-(3n+3):d suy ra1:d suy ra d=1
Vậy n+`1 và 3n+4 la hai số nguyên tố cùng nhau
A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.
Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:
n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.
Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
Gọi d là ƯCLN(n + 1 ; 3n + 4)
Vì n + 1 chia hết cho d nên (n + 1) * 3 = 3n + 3 chia hết cho d
Mà 3n + 4 cũng chia hết cho d
=> (3n + 4 - 3n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vì ƯCLN(n + 1 ; 3n + 4) = d = 1 nên n + 1 và 3n + 4 là 2 số nguyên tố cùng nhau
gọi d là ƯC (n+1;3n+4)
ta có n+1 chia hết cho d=>3(n+1) chia hết cho d=>3n+3 chia hết cho d
mà 3n+4 cũng chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=> 1 chai hết cho d
vậy d=1
=>ƯC(n+1;3n+4)=1
vậy ... nguyên tố cùng nhau
=>dpcm
Gọi ƯCLN (3n+2;4n+3)=d
=> (4n+3) chia hết cho d => 3(4n+3) chia hết cho d => 12n+9 chia hết cho d
=> (3n+2) chia hết cho d => 4(3n+2) chia hết cho d => 12n+8 chia hết cho d
=> (12n+9) - (12n+8) chia hết cho d
=> 1 chia hết cho d
=> d\(\in\)Ư(1)
Mà d lớn nhất
=> d=1
=>3n+2 và 4n+3 là hai số nguyên tố cùng nhau (đpcm)
Bài này mkik mới học hồi sáng, bạn kia làm đúng đó, bạn ấy đi(^_^)
Gọi d thuộc Ư(6n+5,4n+3)
=>6n+5 chia hết cho d ; 4n+3 chia hết cho d
=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d
=>(12n+10)-(12n+9) chia hết cho d
=> 1 chia hết cho d
=>d=1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
Ta gọi d thuộc ƯC(n+1,3n+4)
Ta có n+1 chia hết cho d, 3n+4 chia hết cho d
=> 3(n+1) chia hết cho d, 3n+4 chia hết cho d
=> 3n+3 chia hết cho d, 3n+4 chia hết cho d
=> (3n+4) - ( 3n+3 ) chia hết cho d ( vì 3n+ 4 chia hết cho d và 3n+3 cũng chia hết cho d )
=> 1 chia hết cho d => d = 1. Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( đpcm )