K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

(1) \(\Leftrightarrow x=-5\)

Vậy x = -5 là nghiệm của pt (1)

(2) \(\Leftrightarrow3x-2x=-7+2\Leftrightarrow x=-5\)

Vậy x = -5 là nghiệm của pt (2)

KL: (1) và (2) là 2 pt tương đương (cùng tập nghiệm \(S=\left\{5\right\}\))

Ta có: 2x+10=0

\(\Leftrightarrow2x=-10\)

hay x=-5(1)

Ta có: 3x-2=2x-7

\(\Leftrightarrow3x-2x=-7+2\)

\(\Leftrightarrow x=-5\)(2)

Từ (1) và (2) suy ra hai phương trình 2x+10=0 và 3x-2=2x-7 tương đương

19 tháng 2 2020

Xem lại đề 2 đi bạn

19 tháng 2 2020

1.

\(x^2+3x-4=0\\ \Leftrightarrow x^2-x+4x-4=0\\\Leftrightarrow \left(x-1\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

\(x+2=3\\ \Leftrightarrow x=1\)

\(\Rightarrow\) Hai phương trình này không tương đương vì không có cùng tập nghiệm.

2. \(\left(x+2\right)^2-4x=0\\\Leftrightarrow x^2+4x+4-4x=0\\\Leftrightarrow x^2+4=0\)

\(\Rightarrow\) Tương đương

23 tháng 2 2018

      \(x^2-8x+17=0\)

\(\Leftrightarrow\)\(x^2-8x+16+1=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+1=0\)

Ta thấy    \(\left(x-4\right)^2\ge0\)\(\Rightarrow\)\(\left(x-4\right)^2+1\ge1\)

Vậy pt vô nghiệm

a) Ta có: \(x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: \(S_1=\left\{3;-1\right\}\)(1)

Ta có: \(\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy: \(S_2=\left\{-3;-1\right\}\)(2)

Từ (1) và (2) suy ra \(S_1\ne S_2\)

hay Hai phương trình \(x^2-2x-3=0\) và \(\left(x+1\right)\left(x+3\right)=0\) không tương đương với nhau

1 tháng 6 2017

a) Đ

b) S

c) S

d) Đ

Bài 1: 

a: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\dfrac{3}{2}\right)\)

\(=2\left(x^2-2x+1+\dfrac{1}{2}\right)\)

\(=2\left(x-1\right)^2+1>0\)(luôn đúng)

b: \(x^2-6x+10\)

\(=x^2-6x+9+1=\left(x-3\right)^2+1>=1\) với mọi x

c: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4>0\)

d: \(-x^2+10x-30\)

\(=-\left(x^2-10x+30\right)\)

\(=-\left(x^2-10x+25+5\right)\)

\(=-\left(x-5\right)^2-5\le-5< 0\)

3 tháng 3 2020

Phương trình \(x^2+3x-10=0\)có tập nghiệm S = {-5;2}

Phương trình \(2x^2-3x=2\)có tập nghiệm \(S=\left\{2;-\frac{1}{2}\right\}\)

Vậy hai pt ko tương đương

3 tháng 3 2020

\(x^2+3x-10=0\left(1\right);2x^2-3x=2\left(2\right)\)

Ta có pt (1) \(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)

=> tập hợp nghiệm của pt (1) \(S=\left\{-5;2\right\}\)

Ta có pt (2) \(\Leftrightarrow2x^2-3x-2=0\)

\(\Leftrightarrow2x^2-4x+x-2=0\)

\(\Leftrightarrow2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-1}{2}\end{cases}}}\)

=> tập hợp nghiệm pt (2) \(S=\left\{2;\frac{-1}{2}\right\}\)

Ta thấy pt (1) và (2) đều có chung 1 nghiệm là x=2 

Do đó pt (1) và (2) là 2 pt tương đương 

1 tháng 2 2019

Câu 1 : D

Câu 2 : A

Câu 3 : B

Câu 4 : A

Câu 5 : C

1 tháng 2 2019

lớp 8 thì mấy bài này dễ thôi