Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lấy máy tính tính 2 vế
xong thay x vào để thỏa mãn điều kiện
hok tốt
Ta có :
\(\frac{1}{5}+\frac{2}{30}+\frac{121}{165}\le x\le\frac{1}{2}+\frac{156}{72}+\frac{1}{3}\)
\(\Leftrightarrow\)\(\frac{3}{15}+\frac{1}{15}+\frac{11}{15}\le x\le\frac{3}{6}+\frac{13}{6}+\frac{2}{6}\)
\(\Leftrightarrow\)\(\frac{15}{15}\le x\le\frac{18}{6}\)
\(\Leftrightarrow\)\(1\le x\le3\)
\(\Rightarrow\)\(x\in\left\{1;2;3\right\}\)
Vậy \(x\in\left\{1;2;3\right\}\)
Chúc bạn học tốt ~
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)
\(\Leftrightarrow D=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)
\(\Leftrightarrow D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Leftrightarrow D< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{10-9}{9.10}\)
\(\Leftrightarrow D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Leftrightarrow D< 1-\dfrac{1}{10}\)
\(\Leftrightarrow D< \dfrac{9}{10}< \dfrac{10}{10}=1\)
\(\Leftrightarrow D< 1\left(đpcm\right)\)
1)
Dễ thấy \(B=\dfrac{10^{19}}{10^{19}-3}>1\)
\(\Rightarrow B=\dfrac{10^{19}}{10^{19}-3}>\dfrac{10^{19}+2}{10^{19}-3+2}=\dfrac{10^{19}+2}{10^{19}-1}=A\)
Ta có: A=1/201+1/202+1/203+...+1/300
=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)
Ta có
1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4 (1)
1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5 (2)
từ (1) và (2)=> A<1/4+1/5=>A<9/20
Vậy A<9/20
~~~CHÚC BẠN HỌC GIỎI~~~
=>A=
Ta có: A=1/201+1/202+1/203+...+1/300
=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)
Ta có
1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4 (1)
1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5 (2)
từ (1) và (2)=> A<1/4+1/5=>A<9/20
Vậy A<9/20
Ta có:
5⁶⁰ⁿ = (5³)²⁰ⁿ = 125²⁰ⁿ
2¹⁴⁰ⁿ = (2⁷)²⁰ⁿ = 128²⁰ⁿ
3¹⁰⁰ⁿ = (3⁵)²⁰ⁿ = 243²⁰ⁿ
Do 125 < 128 < 243
125²⁰ⁿ < 128²⁰ⁿ < 243²⁰ⁿ
Vậy 5⁶⁰ⁿ < 2¹⁴⁰ⁿ < 3¹⁰⁰ⁿ