Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/4! + 3/5! + 3/6! + ... + 3/100!
< 3/4! + 4/5! + 5/6! + ... + 99/100!
< 4/4! - 1/4! + 5/5! - 1/5! + 6/6! - 1/6! + ... + 100/100! - 1/100!
< 1/3! - 1/4! + 1/4! - 1/5! + 1/5! - 1/6! + ... + 1/99! - 1/100!
< 1/3! - 1/100! < 1/3!
câu a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
có A= \(\frac{3}{5.2!}\)+\(\frac{3}{5.3!}\)+...+\(\frac{3}{5.100!}\)=\(\frac{3}{5}\)(\(\frac{1}{2!}\)+\(\frac{1}{3!}\)+....+\(\frac{1}{100!}\))
đặt vế trong ngoặc là B. Đặt \(\frac{1}{2!}\)+\(\frac{2}{3!}\)+...+\(\frac{99}{100!}\)=C ta có C=\(\frac{2-1}{2!}\)+\(\frac{3-1}{3!}\)+....+\(\frac{100-1}{100!}\)
=\(\frac{2}{2!}\)-\(\frac{1}{2!}\)+\(\frac{1}{2!}\)-\(\frac{1}{3!}\)+...+\(\frac{1}{99!}\)-\(\frac{1}{100!}\)=1-\(\frac{1}{100!}\)<1
mà \(\frac{1}{2!}\)=\(\frac{1}{2!}\);\(\frac{1}{3!}\)<\(\frac{2}{3!}\);....;\(\frac{1}{100!}\)<\(\frac{99}{100!}\)\(\Rightarrow\)B<C<1\(\Rightarrow\)B.\(\frac{3}{5}\)<1.\(\frac{3}{5}\)=\(\frac{3}{5}\)=0.6\(\Rightarrow\)A<0.6
Cũng đơn giản mà em nhớ k cho chị nha !
Hướng làm thôi nhé.
a) 2n+2 với 2n+3 là 2 số nguyên tố cùng nhau => n+1 cũng nguyên tố cùng nhau với 2n+3
b) Do 2n+3 và 2n+4 là số nguyên tố cùng nhau và 2n+3 không chia hết cho 2 nên 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau